期刊文献+

雷诺数对带蜗壳的离心压气机内部流场影响研究 被引量:7

Effects of Reynolds Number on Internal Flow Field of Centrifugal Compressor with the Volute
下载PDF
导出
摘要 为了探讨离心压气机性能随雷诺数的变化规律,对带蜗壳的全周流道流场进行数值模拟,分析雷诺数对内部流场结构的影响。结果表明:压气机工作于Re=5.7×104和Re=1.3×104下的最高效率比Re=1.4×105分别下降了4.5%和8.5%,所有工况在10%叶高附近效率最高。受到蜗壳的影响,全周流道计算所得压气机的效率值和工作范围均小于单流道计算结果。低雷诺数时,气流抗逆压梯度能力迅速减弱,叶顶泄漏流向下游发展过程中,会绕过相邻叶片前缘或顶部间隙进入其他流道;叶片表面约化静压沿径向的梯度增加,从而造成更严重的二次流动;前缘激波强度、附面层厚度和尾迹宽度均增加,流道内出现激波,压气机性能严重恶化。 The flow field of a whole flow passage centrifugal compressor with its volute was simulated numerically to investigate the changing trends of the performance at different Re.Effects of Re on the internal flow were analyzed in detail.The results show that,compared with Re = 1.4 × 105,the peak efficiencies of the compressor are down 4.5% with Re = 5.7 × 104 and 8.5% with Re = 1.3 × 104,respectively.The highest efficiency point is near 10% blade span in all working conditions.Due to the influence of the volute,efficiency and working range of the compressor are lower than the calculation results of single passage.In the case of low Re,the air flow ability to resist the adverse pressure gradient decreases rapidly.The leakage flow at one blade tip clearance would bypass the leading edge or blade tip of its adjacent blade with the flow developing downstream.More serious secondary flow is caused by increasing the reduced static pressure gradient on the blade surface along radial direction.The performance of the compressor significantly deteriorates owing to increasing shock intensity,boundary layer thickness and wake width.
出处 《推进技术》 EI CAS CSCD 北大核心 2013年第7期911-917,共7页 Journal of Propulsion Technology
基金 中央高校基本科研业务费专项资金资助(HIT.NSRIF.201173)
关键词 离心压气机 蜗壳 雷诺数 泄漏流 Centrifugal compressor Volute Reynolds number Leakage flow
  • 相关文献

参考文献16

二级参考文献56

  • 1顾明皓,桂幸民.低雷诺数效应对某型风扇的性能影响及改进方案研究[J].航空动力学报,2004,19(4):438-443. 被引量:13
  • 2田宁.小推力涡扇发动机的先进制造技术[J].航空制造技术,2005,48(3):53-55. 被引量:1
  • 3赵英武.雷诺数对压气机性能影响的数值模拟[D].西安:空军工程大学,2008.
  • 4[1]Alan H Epstein.Micro Turbine Engines For Soldier Power[R].The Defense Science and Technology Seminar,2000.
  • 5[2]Epstein A H,etc.Micro Gas Turbine Generators[R].Massachusetts Inst. of Tech.,Gas Turbine Lab,Final Rept.1995-2000.
  • 6[3]HanS(o)jrg Schlip,Fabrication of Turbine-Compressor-Shaft Assembly For Micro Gas Turbine Engine[D].Mater's Thesis, Stanford Univ.,December 2000.
  • 7[4]HanS(o)jrg Schlip,Kang S,Stampfl J,Cooper A G,Prinz F B.Application of the Mold SDM Process to the Fabrication of Ceramic Parts for a Micro Gas Turbine engine[R].Heinrich J G(ed.), Proceedings Ceramics Materials and Components for Engines,Germany,2000.
  • 8[5]Miklos Gerendas,Ralph Pfister.Development of a Very Small Aero-Engine[ R].Proceedings of ASME TurboExpo 2000,45th ASME International Gas Turbine and Aero-Engine Technical Congress and Exposition,2000-GT-0536.
  • 9[6]Mindi Farber De Anda,Christina TerMaath,Ndeye K Fall.Distributed Energy Technology Simulator Microturbine Demonstration[R].Energetics,Inc.Washington,DC,2001.
  • 10[7]http://www.pratt-whitney.com[Z].

共引文献68

同被引文献47

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部