期刊文献+

基于蛙跳算法的MIMO-OFDM功率自适应分配 被引量:1

MIMO-OFDM Adaptive Power Allocation Based on SFLA Algorithm
下载PDF
导出
摘要 为找出多输入多输出正交频分复用MIMO-OFDM(Multiple-Input Multiple-Out-put,MIMO-OFDM)系统较优的功率分配方案,将蛙跳算法引入MIMO-OFDM系统中,基于误比特率性能最优化的原则,以提高系统的误比特率性能为出发点,利用蛙跳算法对MIMO-OFDM系统的功率分配进行优化,仿真结果表明,通过蛙跳算法的优化,MIMO-OFDM功率自适应系统的算法得以简化,实时性得以提高,性能得到改善. In order to get an optimal scheme for power distribution of the MIMO-OFDM system,the SFLA algorithm is imported into the MIMO-OFDM system.It is used to optimize MIMO-OFDM system power distribution on the basis of the bit error rate performance optimization principle and with the improvement of the system bit error rate performance as the starting point.Simulation results show that the algorithm of the MIMO-OFDM adaptive power system is simplified,and the time and performance are improved through optimization by the SFLA algorithm.
出处 《西安工业大学学报》 CAS 2013年第3期203-207,共5页 Journal of Xi’an Technological University
关键词 蛙跳算法(SFLA) 多输入多输出 正交频分复用 功率自适应 shuffled frog leaping algorithm(SFLA) multiple-input multiple-output(MIMO) orthogonal frequency division multiplexing(OFDM) adaptive power
  • 相关文献

参考文献5

  • 1王文博,郑侃.宽带无线通信OFDM技术[M].北京:人民邮电出版社,2007.
  • 2CZYLWIK A. Adaptive OFDM for Wideband RadioChannels. [J] . IEEEProc Globecom,96 (S0895 -1195),1996(1):713.
  • 3黄晓然.一种基于最优误比特率的MIMO-OFDM功率分配算法[J].现代电子技术,2007,30(10) :131.
  • 4郎庆田,龚利群.OFDM系统中的比特和功率联合分配算法[M].北京:机械工业出版社,2005.
  • 5王晓笛,何灿.混洗蛙跳算法的研究[J].电脑知识与技术,2011,7(7):4661-4664. 被引量:3

二级参考文献17

  • 1Eusuff M M, Lansey K E. Optimization of water distribution network design using the shuffled frog leaping algorithm [J].Water Re- sources Planning and Management, 2003,129(3):210-225.
  • 2Dawkins R.The selfish gene[M].Oxford university Press,1976.
  • 3Elbeltagi E, Hegazy T, Grierson D.Comparison among five evolutionary-based optimization algorithms [J].Advaneed Engineering Infor- matics, 2005,19(1):43-53.
  • 4Elbehagi E, Hegazy T, Grierson D.A modified shuffled frog-leaping optimization algorithm:applications to project management[J].Struc- ture and Infrastructure Engineering: Maintenance, Management. Life-Cycl, 2007,3(1):53-60.
  • 5Zhen Z Y, Wang Z S, Gu Z, et al.A novel memetic algorithm for global optimization based on PSO and SFLA[J].Lecture Notes in Com- puter Science,Springer, 2007(4683):127-136.
  • 6Zhang Z C, Hu X M, Cui G Z, et al.An improved shuffled frog leaping algorithm with cognitive behavior [J].In Proceedings of the 7th World Congress on Intelligent Control and Automation, June 25-27, Chongqing, China, 2008:6197-6202.
  • 7Eusuff M M, Lansey K E. Optimization of water distribution network design using the shuffled frog leaping algorithm [J]. Water Resour Plan Manage, 2003, 129(3):210-225.
  • 8Ebe|tagi E, Hegazy T, Grierson D.Comparison among five evolutionary based optimization algorithm[J]. Advanced Engineering Informat- ics,2005,19(1) :43-53.
  • 9Eusuff M M, Lansey K El Pasha F. Shuttled frog-ieaping algorithm:a memetic meta-heuristic for discrete Optimization. Eng Optim, 2006,38(2): 129-154.
  • 10Rahimi-Vahed A, Mirzaei A H. A hybrid multi-objective shuffled frog-leaping algorithm for a mixed-model assembly line sequenc- ing Problem[J].Computer & Industrial Engineering,2007.

共引文献40

同被引文献14

  • 1Krishna R, Cumanan K, Xiong Zhilan, et al. A Novel Co- operative Relaying Strategy for Wireless Networks With Signal Quantization [ J ]. IEEE Transactions on Vehicular Technology,2010,59( 1 ) :485-489.
  • 2Liu K. Temporal Reuse in Cooperative Relay Networks via Destination Feedback[ J]. IEEE Transactions on Vehicu- lar Technology ,2014,63 (6) :2712-2722.
  • 3Xiao Y, Leonard J C. Impact of Overhead on Spec-tral Ef- ficiency of Cooperative Relaying [ J ]. IEEE Transactions on Wireless Communications ,2013,12 ( 5 ) :2228-2239.
  • 4Michalopoulos D S, Lioumpas A S, Karagiannidis G K, et al. Selective Cooperative Relayingover Time- Varying Channels [ J ]. IEEE Transactions on Communications, 2010,58 (8) :2402-2412.
  • 5Rasouli H, Anpalagan A. SNR based vs. BER based pow- er allocation for an amplity- and- forward single- relay wireless system with MRC at the destination [ C]//Pro- ceedings of 2010 25th Biennial Symposium on Communi- cations. Kingston : IEEE ,2010:429-432.
  • 6Dang W B ,Tao M X, Mu H, et al. Subcarrier-Pair Based Resource Allocation for Cooperative AF Multi- Relay OFDM Systems [ C ]//Proceedings of 2009 IEEE Global Telecommunications Conference. Honolulu, HI: IEEE, 2009 : 1-6.
  • 7Wang C L, Chen J Y, Wang H C. Capacity analysis and power allocation under imperfect channel estimation for AF-based cooperative relay systems [ C ]//Proceedings of 2012 IEEE Global Communications Conference. Ana- heim, CA : IEEE ,2012:4677-4682.
  • 8Krishnanand K, Ghose D. Detection of multiple source locations using a glowworm metaphor with applications to collective robotics [ C ]//Proceedings of 2005 IEEE Swarm Intelligence Symposium. Pasadena, CA, USA : IEEE,2005:84-91.
  • 9Aljarah I, Ludwig S A. A new clustering approach based on Glowworm Swarm Optimization [ C ]// Proceedings of 2013 IEEE Congress on Evolutionary Computation. Can- cun: IEEE ,2013:2642-2649.
  • 10He D X, Liu G Q, Zhu H Z. Glowworm Swarm Opti- mization Algorithm for Solving Muhi-objec-tive Optimi- zation Problem [ C ]// Proceedings of the 9th Interna- tional Conference on Computational Intelligence and Se- curity. Leshan : IEEE,2013 : 11 - 15.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部