期刊文献+

Spalart的曲率修正方法在SST k-ω模型中的应用 被引量:1

Implementation and Verification of Spalart’s Rotation/Curvature Correction Method for SST k-ω Turbulence Model
下载PDF
导出
摘要 基于Spalart和Shur的曲率修正方法,修改SST k-ω模型的生成源项,给出了一种考虑曲率效应的SSTRC k-ω模型,然后数值模拟了具有轻微曲率效应的弯曲壁面和具有强曲率效应的180°U形弯管流动。数值模拟结果表明:修改后的SSTRC k-ω模型能够正确反映曲率效应所带来的额外雷诺应力,可以给出比原SST k-ω模型更加准确的计算结果,更适用于处理带有流线弯曲的流动问题;并能保证和原SST k-ω模型相当的数值收敛性;SSTRC k-ω模型对计算精度的改进程度严重依赖于曲率修正常数,但对大多数流动问题,采用目前确定的常数,SSTRC k-ω模型都可以给出比较准确合理的结果。 Applying Spalart and Shur’s rotation-curvature correction method to the SST k-ω turbulence model,we establish what we call SSTRC k-ω model.The SSTRC model is verified through two turbulent flows: one is the flow over the mild curvature curved wall and the other is the flow in a plane channel with a U-turn.Numerical Predictions of the SSTRC model are compared with available experimental data,on the one hand,and with the corresponding results of the original standard SST model,on the other hand.It is found that in terms of accuracy the SSTRC model is significantly better than the original SST model.The improvements in accuracy of SSTRC might be highly dependent on the rotation-curvature model constants,but,for most cases,setting cr1 = 1,cr2 = 1 and cr3 = 0.6,can give fairly good numerical results for SSTRC model.
作者 张强 杨永
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2013年第3期392-396,共5页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(11002117) 西北工业大学基础研究基金(JCY2013001)资助
关键词 SST k-ω模型 曲率修正 RANS 逆压梯度 雷诺应力 computational fluid dynamics Navier Stokes equations numerical methods tensors turbulence models correction curvature improvement Lagrangian derivatives strain tensor
  • 相关文献

参考文献7

  • 1Spalart P R, Shur M. On the Sensitization of Turbulence Models to Rotation and Curvature. Aerospace Science and Technology 1997, 1 (5) : 297-302.
  • 2Shur M, Strelets M, Travin A, Spalart P R. Turbulence Modeling in Rotating and Curved Channels : Assessing the Spalart-Shur Correction. AIAA Journal 2000, 38(5) : 784-792.
  • 3Menter F R, Kuntz M, Langtry R. Ten Years of Industrial Experience with the SST Turbulence Model. Turbulence, Heat and Mass Transfer 4, ed: K. Hanjalic, Y. Nagano, and M. Tummers, Begell House, Inc. 2003, 625-632.
  • 4Pavel E S, Menter F R. Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term. Journal of Turbomachinery 2009; 131 (4) :1:-8.
  • 5杨永,张强.基于SA模型的两种曲率修正方法的应用及验证[J].西北工业大学学报,2012,30(6):820-824. 被引量:1
  • 6So R, Mellor G L. Experiment on Convex Curvature Effects in Turbulent Boundary Layers. Journal of Fluid Mechanics 1973 ; 60 (1) : 43-62.
  • 7Monson D J, Seegmiller H L. An Experimental Investigation of Subsonic Flow in a Two-Dimensional U-Duct. NASA TM 103931, 1992.

二级参考文献8

  • 1Spalart P R, Allmaras S R. A One-Equation Turbulence Model for Aerodynamic Flows. Recherche Aerospatiale, 1994, 1 (1) : 5-21.
  • 2Spalart P R, Shur M. On the Sensitization of Turbulence Models to Rotation and Curvature. Aerospace Science and Technology, 1997, 1(5) : 297-302.
  • 3Shur M, Strelets M, Travin A, Spalart P R. Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction. AIAA Journal, 2000, 38(5) : 784-792.
  • 4Dacles M J, Zilliac G G, Chow J S, Bradshaw P. Numerical/Experimental Study of a Wingtip Vortex in the Near Field. AIAA Journal, 1995, 33(9): 1561-1568.
  • 5Pavel E S, Menter F R. Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Cor- rection Term. Journal of Turbomachinery, 2009, 131(4) : 1-8.
  • 6So RMC, Mellor GL. Experiment on Convex Curvature Effects in Turbulent Boundary Layers. Journal of Fluid Mechanics, 1973, 60( 1 ) : 43-62.
  • 7Monson D J, Seegmiller H L. An Experimental Investigation of Subsonic Flow in a Two-Dimensional U-Duct. NASA TM 103931, 1992.
  • 8张强,杨永.迎风格式的低速预处理及远场边界影响研究[J].西北工业大学学报,2012,30(3):412-416. 被引量:3

同被引文献15

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部