期刊文献+

基于改进粒子滤波的飞机起落架损伤识别研究 被引量:2

Improving Damage Identification of Aircraft Landing Gear with Imrproved Particle Filter
下载PDF
导出
摘要 针对飞机起落架损伤识别问题,提出了一种识别起落架损伤的改进粒子滤波方法。首先,建立了飞机起落架动力学模型,分析起落架损伤的危险点,得到其应力响应信号;然后,采用核平滑技术和快速高斯采样法,实现非线性系统中状态与参数估计,解决了粒子滤波重采样过程中的参数粒子枯竭现象,增加了该方法运行的实时性。实验信号分析结果表明,改进粒子滤波方法能准确识别飞机起落架危险点损伤,识别精度优于传统粒子滤波方法。 An improved particle filter method is proposed for improving damage identification of the aircraft landing gear.First,we establish landing gear model and analyze its dangerous point to obtain the stress signal.Then,kernel smoothing technology and fast Gaussian sampling method are used to estimate the states and parameters of nonlinear system.This method can accurately identify the landing gear damage.The experimental results and their analysis confirm preliminarily that the proposed method outperforms the traditional method.
机构地区 西北工业大学
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2013年第3期397-400,共4页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(50975231)资助
关键词 飞机起落架 改进粒子滤波 核平滑技术 快速高斯采样法 损伤识别 damage detection flowcharting landing gear(aircraft) mathematical models nonlinear systems parameter estimation state estimation fast Gaussian sampling method improved particle filter kernel smoothing
  • 相关文献

参考文献9

二级参考文献22

  • 1莫以为,萧德云.基于进化粒子滤波器的混合系统故障诊断[J].控制与决策,2004,19(6):611-615. 被引量:23
  • 2WEST M. Approximating posterior distribution by Mixtures [ J]. Journal of Royal Statistical Society, 1993, 55:409 - 422.
  • 3WEST M. Mixture models, monte carlo, bayesian up- dating and dynamic models [ A ]. Proceedings of the 24 the Symposium on the Interface[ C]. Fairfax Station, Virginia, 1993:325 - 333.
  • 4帕普里斯A,佩莱S.概率、随机变量与随机过程[M].保铮,译.西安:西安交通大学出版社,2004:70-72.
  • 5WAN E A, NELSON A T. Dual extended Kalman filter methods in kalman filtering and neural networks [M]. New York: John Wiley and Sons Inc, 2001: 123 - 173.
  • 6HABIL! S. Combined variable structure and Kalman filtering approach [ M ]. NewYork: American Control Conference, 2008 : 1855 - 1862.
  • 7CARPENTER J, CLIFFORD P, FEARNHEAD P. Improved particle filter for nonlinear problems [ J]. IEE Proc Radar Sonar Navig, 1999 : 146( 1 ) : 1 - 7.
  • 8STORVIK G. Particle filters for state - space modles with the presence of unknown static parameters [ J]. IEEE Transactions on Signal Processing, 2002 , 50 (2) :281 -289.
  • 9LIU J S, CHEN R. Sequential Monte Carlo methods for dynamical systems [ J]. J of the American Statistical Association, 1998, 93 (5):1032-1044.
  • 10DOUCCT A, CODSILL S, ANDRIEU C. On sequential monte carlo sampling methods for Bayesian flltring. Statist [J]. Comput, 2000(10) : 197-208.

共引文献26

同被引文献21

  • 1Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlin- ear/non- Gaussian Bayesian state estimation[ C ]//IEE Proceedings F (Radar and Signal Processing). lET Digital Library, 1993, 140 (2) : 107 - 113.
  • 2Flury T, Shephard N. Bayesian inference based only on simulated like- lihood: particle filter analysis of dynamic economic models[ J ]. Econo- metric Theory, 2011, 27(5) : 933.
  • 3Vermaak J, Doucet A, P6rez P. Maintaining multimodality through mixture tracking [ C ]//Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on. IEEE, 2003 : 1110 - 1116.
  • 4Okuma K, Taleghani A, De Freitas N, et al. A boosted particle filter: Multitarget detection and tracking [ C ]//Computer Vision -ECCV 2004. Springer Berlin Heidelberg, 2004 : 28 - 39.
  • 5Takahisa K, Sun Z, Micheletto R. A Fast and Precise HOG - Ada- boost Based Visual Support System Capable to Recognize Pedestrian and Estimate Their Distance[ C]//New Trends in Image Analyss and Processing - ICIAP 2013. Springer Berlin Heidelberg, 2013 : 20 -29.
  • 6Papageorgiou C P, Oren M, Poggio T. A general framework for object detection [ C ]//Computer Vision, 1998. Sixth International Confer- ence on. IEEE, 1998:555 -562.
  • 7Freund Y, Schapire R E. A desicion - theoretic generalization of on - line learning and an application to boosting[ C]//Computational learn- ing theory. Springer Berlin Heidelberg, 1995:23-37.
  • 8Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [ C ]//Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Confer- ence on. IEEE, 2001, 1:1-511-1-518.
  • 9Dalai N, Triggs B. Histograms of oriented gradients for human detec- tion[ C]//Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. IEEE, 2005, 1 : 886 - 893.
  • 10PEREZ P. Color - based probabilistic tracking [ C ]//Proc. Eur. Conf. on Computer Vision, Copenhagen. 2002 : 661 - 675.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部