摘要
运用锥上不动点理论研究二阶离散周期边值问题Δ2u(t-1)+a(t)u(t)=λg(t)f(u(t))+c(t),t∈[1,T]Z,u(0)=u(T),Δu(0)=Δu(T).得到了在非线性项f有奇性和无奇性时正解的存在性、多解性和不存在性.
For the second order periodic discrete boundary value problem Δ2u(t-1)+a(t)u(t)=λg(t)f(u(t))+c(t),t∈[1,T]Z, u(0)=u(T),Δu(0)=Δu(T),by using fixed point theory in cone,the existence,multiplicity and nonexistence of positive solutions are obtained when nonlinear term f has singularity and no singularity.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第4期345-351,共7页
Journal of Inner Mongolia University:Natural Science Edition
基金
国家自然科学基金资助(No.11061030)
甘肃省自然科学基金资助项目(No.3ZS051-A25-016)
关键词
正解
存在性
差分方程
不动点定理
positive solution
existence
difference equation
fixed point theory