期刊文献+

云计算中基于优先级和费用约束的任务调度算法 被引量:8

Task scheduling algorithm based on priority and cost constraint in cloud computing
下载PDF
导出
摘要 针对云计算中的服务质量保证问题,提出一种基于优先级和费用约束的任务调度算法。该算法通过计算任务优先级和资源服务能力,分别对任务和资源进行排序和分组,并根据优先级高低和服务能力强弱建立任务组和资源组间的调度约束关联;再通过计算任务在关联资源组内不同资源上的完成时间和费用,将任务按优先级高低依次调度到具有任务完成时间和费用折中值最小的资源上。与Min-Min和QoS-Guided-Min算法的对比实验结果表明,该算法具有良好的系统性能和负载均衡性,并降低了服务总费用。 Concerning the service quality assurance in cloud computing,a task scheduling algorithm based on priority and cost constraint was proposed.Firstly,it computed the priority of tasks and the service ability of resources,then made sorting and grouping for tasks and resources respectively,and set the scheduling constrained relationship according to the priority and service ability between task groups and resource groups.Furthermore,the completion time and cost of tasks spent on different resources located in the related resource group were calculated,and finally each task was scheduled in turn onto a resource with minimum time-cost tradeoff value according to its priority.The simulation results show that,compared with Min-Min and QoS-Guided-Min,the proposed algorithm achieves better performance and load balancing,and reduces the overall service cost.
出处 《计算机应用》 CSCD 北大核心 2013年第8期2147-2150,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61100185) 保密通信重点实验室基金资助项目(9140C110404110C1106) 广西自然科学基金资助项目(2012GXNSFAA053224) 广西教育厅基金资助项目(201010LX156 CD10066X) 广西研究生教育创新计划项目(2010105950810M18)
关键词 云计算 任务调度 服务质量 优先级 费用约束 cloud computing task scheduling Quality of Service(QoS) priority cost constraint
  • 相关文献

参考文献13

  • 1WEISS A. Computing in the clouds [J]. NetWorker, 2007, 11(4) : 16 - 25.
  • 2MISHRA A, JIN R, DURRESI A and communication challenges [ J] Cloud computing: networking IEEE Communietions Mgzine, 2012, 50(9) : 24 - 25.
  • 3BRAUN T D, SIEGEL H J, BECK H, et al. A comparison of elev- en static heuristics for mapping class of independent tasks onto heter- ogeneous distributed computing systems [ J]. Journal of Parallel and Distributed Computing, 2001, 61(6) : 810 - 837.
  • 4STNTCHEV V, SCHROPFER C. Negotiating and enforcing QoS and SLAs in grid and cloud computing [ C]// GPC '09: Proceedings of the 4th International Conference on Advances in Grid and Pervasive Computing. Berlin: Springer-Verlag, 2009:25-35.
  • 5ZHAO L P, REN Y Z, LI M C, et al. Flexible service selection with user-specific QoS support in service-oriented architecture [ J]. Journal of Network and Computer Applications, 2012, 35(3) : 962 - 973.
  • 6李文娟,张启飞,平玲娣,潘雪增.基于模糊聚类的云任务调度算法[J].通信学报,2012,33(3):146-154. 被引量:38
  • 7XU B, ZHO C, HU E, et al. Job scheduling algorithm based on Berger model in cloud environment [ J]. Advances in Engineering Software, 2011, 42(7): 419-425.
  • 8HE X S, SUN X-H, yon LASZEWSKI G. QoS guided scheduling algorithm for grid computing [ J]. Journal of Computer Science and Technology, 2003, 18(4) : 445 - 451.
  • 9郑湃,崔立真,王海洋,徐猛.云计算环境下面向数据密集型应用的数据布局策略与方法[J].计算机学报,2010,33(8):1472-1480. 被引量:122
  • 10DHINESH BABU L D, KRISHN P V. Honey bee behavior inspired load balancing of tasks in cloud computing environments [ J]. Ap- plied Soft Computing, 2013, 13(5):2292 -2303.

二级参考文献29

  • 1杜晓丽,蒋昌俊,徐国荣,丁志军.一种基于模糊聚类的网格DAG任务图调度算法[J].软件学报,2006,17(11):2277-2288. 被引量:48
  • 2Deelman E,Chervenak A.Data management challenges of data-intensive scientific workflows//Proceedings of the IEEE International Symposium on Cluster Computing and the Grid(CCGRID).Lyon,France,2008:687-692.
  • 3Deelman E,Blythe J,Gil Y,Kesselman C,Mehta G,Patil S,Su M H,Vahi K,Livny M.Pegasus:Mapping scientific workflows onto the grid//Proceedings of the European Across Grids Conference(AxGrids).Nicosia,Cyprus,2004:11-20.
  • 4Ludascher B,Altintas I,Berkley C,Higgins D,Jaeger E,Jones M,Lee E A.Scientific workflow management and the Kepler system.Concurrency and Computation:Practice and Experience,2005,18(10):1039-1065.
  • 5Oinn T,Addis M,Ferris J,Marvin D,Senger M,Greenwood M,Carver T,Glover K,Pocock M R,Wipat A,Li P.Taverna:A tool for the composition and enactment of bioinformatics workflows.Bioinformatics,2004,20(17):3045-3054.
  • 6Ghemawat S,Gobioff H,Leung S T.The google file system.ACM SIGOPS Operating Systems Review,2003,37(5):29-43.
  • 7Wang L,Tao J,Kunze M,Castellanos A C,Kramer D,Karl W.Scientific cloud computing:Early definition and experience//Proceedings of the 10th IEEE International Conference on High Performance Computing and Communications(HPCC).Dalian,China,2008:825-830.
  • 8Wieczorek M,Prodan R,Fahringer T.Scheduling of scientific workflows in the ASKALON grid environment.SIGMOD Record,2005,34(3):56-62.
  • 9Baru C,Moore R,Rajasekar A,Wan M.The SDSC storage resource broker//Proceedings of the IBMCentre for Advanced Studies Conference.Toronto,Canada,1998:1-12.
  • 10Churches D,Gombas G,Harrison A,Maassen J,Robinson C,Shields M,Taylor I,Wang I.Programming scientific and distributed workflow with Triana services.Concurrency and Computation:Practice and Experience,2006,18:1021-1037.

共引文献158

同被引文献45

  • 1胡金泉,罗蓉媛.外军战术通信系统的现状、发展与展望[J].移动通信,1995,19(5):13-17. 被引量:1
  • 2杜晓丽,蒋昌俊,徐国荣,丁志军.一种基于模糊聚类的网格DAG任务图调度算法[J].软件学报,2006,17(11):2277-2288. 被引量:48
  • 3TOPCUOGLU H, HARIRI S, WU M. Performance-effective and low-complexity task scheduling for heterogeneous computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2002, 13(3): 260-274.
  • 4WILMER D, KLOS T, WILSON M. Distributing flexibility to enhance robustness in task scheduling problems[EB/OL].[2014-02-01]. http://bnaic2013.tudelft.nl/proceedings/papers/paper_88.pdf.
  • 5PATEL R, PATEL S. Survey on resource allocation strategies in cloud computing[J]. International Journal of Engineering Research and Technology, 2013,2(2): 1-5.
  • 6LI J, SAIFULLAH A, AGRAWAL K, et al.Capacity augmentation bound of federated scheduling for parallel DAG tasks, WUCSE-2014-44[R]. St Louis: Washington University, 2014.
  • 7LIU Z, QU W, LIU W, et al.Resource preprocessing and optimal task scheduling in cloud computing environments[EB/OL].[2014-02-10].http://www.chinacloud.cn/upload/2014-01/14013115059049.pdf.
  • 8GUO L, ZHAO S, SHEN S, et al.Task scheduling optimization in cloud computing based on heuristic algorithm[J]. Journal of Networks, 2012, 7(3): 547-553.
  • 9HUANG J. The workflow task scheduling algorithm based on GA model in the cloud computing environment[J]. Journal of Software, 2014, 9(4):873-880.
  • 10Abadi D J. Data management in the cloud.- Limitations and opportunities[J]. Bulletion of the IEEE Computer Society Technical Committee on Data Engineering, 2009,32(1) .-3-12.

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部