期刊文献+

组合公钥体制的线性共谋攻击分析 被引量:5

Linear collusion attack analysis of combined public key cryptosystem
下载PDF
导出
摘要 针对组合公钥(CPK)体制中的线性共谋攻击问题,从其本质出发,根据密钥产生原理提出了新的方程组构造方法。通过对方程组的系数矩阵进行线性变换,求得了方程组的秩,发现其小于私钥矩阵的种子数;同时,分析了私钥的构造,发现增广矩阵的秩不等于系数矩阵的秩。由此两方面证明了即便攻击者得到所有私钥也无法解得方程组的唯一解。因此,论证了组合公钥体制不存在线性共谋攻击的威胁。 Concerning the linear collusion attack problem in Combined Public Key(CPK) cryptosystem,on the basis of the nature of the linear collusion attack and according to the principle of key generation,a new equation set was constructed.Through the linear transformation to the coefficient matrix of the equation set,the rank of the equations can be solved,and it is less than the number of seeds of private key seed matrix.At the same time,the analysis of the private key's structure shows that the rank of the augmented matrix is not equal to the rank of coefficient matrix.Thus both sides above prove that the attacker never get the unique solution to the private key seed matrix even if he get all the private keys.Therefore,it demonstrates that there does not exist the threat of linear collusion attack in the CPK cryptosystem.
出处 《计算机应用》 CSCD 北大核心 2013年第8期2225-2227,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(61071116 61271260)
关键词 组合公钥 共谋攻击 标识认证 种子矩阵 线性变换 Combined Public Key(CPK) collusion attack identity authentication seed matrix linear transformation
  • 相关文献

参考文献12

二级参考文献21

  • 1汪宇光.CPK认证体制的技术特点及应用[J].电子科学技术评论,2005(2):5-10. 被引量:17
  • 2周加法,马涛,李益发.PKI、CPKI、BC性能浅析[J].信息工程大学学报,2005,6(3):26-31. 被引量:23
  • 3南相浩.CPK算法与标识认证[J].信息安全与通信保密,2006,28(9):12-16. 被引量:30
  • 4FORNO R,FEINBLOOM W. PKI:a question of trust and value[ J ]. Communications of the ACM,2001,44(6) :120.
  • 5SHAMIR A. How to share a secret [ J ]. GommunieaUon of AGM, 1979,22 ( 11 ) :612-613.
  • 6MENEZES A. Elliptic curve pulbic key cryptosystems [ M ]. Boston : Kluwer Academic Pubhshers, 1993.
  • 7陈华平,关志.关于CPK若干问题的说明[J].信息安全与通信保密,2007,29(9):47-49. 被引量:10
  • 8Diffie W,Hellman M.New Directions in Cryptography[J].IEEE Transactions on Information Theory,1976,22(6):644-654.
  • 9Rivest R,Shamir A,Adleman L.A Method for Obtaining Digital Signatures and Public-key Cryptosystems[J].Communication of ACM,1978,21(2):120-126.
  • 10Koblitz N.Elliptic Curve Cryptosystems[J].Mathematics of Computation,1987,48(177):203-209.

共引文献51

同被引文献32

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部