期刊文献+

采用凹二次正则项的弹性点匹配算法 被引量:1

Non-rigid feature point matching algorithm using concave quadratic regularization term
下载PDF
导出
摘要 现有的采用l1范数正则项的点匹配算法,其l1范数优化问题可等价为一个线性规划问题,但约束不满足完全的单模性,这导致解出的对应关系不是整数,需要后续的取整过程,这会给计算结果带来额外误差并使算法复杂化。为解决该问题,基于鲁棒点匹配算法的最新成果,提出一种新的正则项。该正则项是凹的,可以证明目标函数具有整数的最优解,所以算法无须后续处理,实现起来更简单。实验结果表明:相比采用l1范数正则项的算法,所提算法对于各种干扰均有更好的鲁棒性,特别对于野点干扰,误差只有对比算法的一半。 For the existing point matching algorithms adopting the l1 norm regularization terms,the corresponding l1 norm optimization problems are equivalent to linear programs.But the constraints do not satisfy the total unimodularity property,which causes the point correspondence solutions to be non-integers and post-processing is needed to convert the solutions to integers.Such processing brings error and complicates the algorithms.To resolve the above problem,based on the latest result with the robust point matching algorithm,a new regularization term was proposed.The new regularization term is concave and it can be proved that the objective function has integral optimal solutions.Therefore,no post-processing is needed and it is simpler to implement.The experimental results show that,compared with the algorithms adopting the l1 norm regularization terms,the proposed algorithm is more robust to various types of disturbances,particularly outliers,while its error is only half of the compared algorithms.
作者 连玮 左军毅
出处 《计算机应用》 CSCD 北大核心 2013年第8期2320-2324,共5页 journal of Computer Applications
基金 山西省青年科技研究基金资助项目(2012021015-2) 山西省高校科技研究开发项目(20111128)
关键词 正则项 凹函数 空间变换 点对应关系 特征点匹配 匈牙利算法 regularization term concave function spatial transformation point correspondence feature point matching Hungarian algorithm
  • 相关文献

参考文献14

  • 1BESL P J, MCKAY N D. A method for registration of 3-D shapes [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1992, 14(2): 239-256.
  • 2ZHANG Z Y. Iterative point matching for registration of free-form curves and surfaces [ J]. International Journal of Computer Vision, 1994, 13(2): 119-152.
  • 3CtfUIA H, RANGARAJAN A. A new point matching 'algorithm for non-rigid registration [ Jl. Computer Vision and Image Understand- ing, 2003, 89(2): 114-141.
  • 4MYRONENKO A, SONG X B. Point set registration: coherent point drift [ J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2010, 32( 12): 2262-2275.
  • 5TSIN Y, KANADE T. A corrolation-based approach to robust point set registration [ C]//ECCV 2004: Proceedings of the 2004 Europe- an Conference on Computer Vision, LNCS 3023. Berlin: Springer, 2004:558-569.
  • 6JIAN B, VEMURI B C. A robust algorithm for point set registration using mixture of Gaussians [ C]// ICCV 2005: Proceedings of the Tenth IEEE International Conference on Computer Vision. Washing- ton, DC: 1EEE Computer Society, 2005, 2: 1246- 1251.
  • 7LIN W-Y, LIU L L, MATSUSHITA Y, et al. Aligning images in the wild [ C]//CVPR 2012: Proceedings of the 2012 IEEE Confer- ence on Computer Vision and Pattern Recognition. Washington,DC: IEEE Computer Society, 2012:1 - 8.
  • 8JIANG H, DREW M S, LI Z N. Matching by linear programming and successive eonvexification [ J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2007, 29(6): 959 -975.
  • 9JIANG FI, YU S X. Linear solution to scale and rotation invariant object matching [ C]// CVPR 2009: Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Washing- ton, DC: IEEE Computer Society, 2009:2474-2481.
  • 10LI H S, KIM E, HUANG X L, et al. Object matching with a lot, ally affine-invm'iant constraint [ C]// CVPR 2010: Prot'eedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. WashinNon, DC: IEEE Computer Society, 2010: 1641- 1648.

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部