期刊文献+

基于密度的加权K-Means算法

Weighted K-Means based on density
原文传递
导出
摘要 K-Means算法是比较流行的局域聚类算法,但由于其存在需要输入聚类数目以及对初始聚类中心敏感等缺陷,本文提出了一种基于密度的加权K-Means聚类算法来初始化聚类中心。该算法定义了点的密度函数和聚类中心函数,通过一定评价函数获取聚类中心。该方法获取的聚类中心不仅周围密度比较大,而且各个聚类中心之间相关性比较小,从而有效的减少了聚类时间,提高算法效率。 K-Means is one of the popular local area clustering algorithms. Aiming to its defects such as calling for the clustering number input and the sensitivity to initial clustering center, this paper put forward the advanced K-Means on the density and the weight to initialize the clustering center. The algorithm defines the point density function and the clustering center function, and obtains the clustering centers through the definition of the evaluation function. The clustering centers via the algorithm culd have not only high den- sity but also small relevance, and thereby reduce the time of clustering and improve the efficiency.
出处 《测绘科学》 CSCD 北大核心 2013年第4期146-148,共3页 Science of Surveying and Mapping
基金 数字制图与国土信息应用工程重点实验室开放基金 江苏省资源环境信息工程重点实验室(中国矿业大学)开放基金资助项目(JS201108)
关键词 K-均值 聚类中心 密度 加权 K-Means clustering center density weight
  • 相关文献

参考文献11

  • 1M N Murty, A K Jain. Data clustering: a review [ J ]. ACM Computing Surveys, 1999, 31 : 264-323.
  • 2B Everitt, S Landau, M Leese. Cluster Analysis [ M ]. London :Arnold, 2001.
  • 3S Theodoridis, K Koutroumbas. Pattern Recognition[ M]. 2nd Ed. , Academic Pr, 2003, 233-235.
  • 4T Kanungo, D Mount. An efficient k-means clustering al- gorithm: analysis and implantation [ C ]//IEEE Trans. PAMI, 2004,24: 881-892.
  • 5PS Bradley, U M Fayyad. Refining initial points for k- means clustering[ C ]//Proceedings of the Fifteenth Inter-national Conference on Machine Learning. Morgan Kauf- mann Publishers Inc. San Francisco, CA, USA, 1998: 91-99.
  • 6张玉芳,毛嘉莉,熊忠阳.一种改进的K-means算法[J].计算机应用,2003,23(8):31-33. 被引量:73
  • 7周涓,熊忠阳,张玉芳,任芳.基于最大最小距离法的多中心聚类算法[J].计算机应用,2006,26(6):1425-1427. 被引量:71
  • 8孙士保,秦克云.改进的k-平均聚类算法研究[J].计算机工程,2007,33(13):200-201. 被引量:50
  • 9Usama M Fayyad, Cory A Reina, Paul S Bradley. Initial- ization of Iterative Refinement clustering algorithms [ C ]// Proc. 4th International Conf. On Knowledge Discovery & Data Ming,1998 : 194-198.
  • 10DUDA R O, HART PE. Pattern classification and scene a- nalysis [ M ]. New York : John Wiley & Sons, 1973.

二级参考文献33

  • 1余建桥,张帆.基于数据场改进的PAM聚类算法[J].计算机科学,2005,32(1):165-167. 被引量:15
  • 2(加)HanJ KamberM 范明 盂小峰 等译.数据挖掘概念与技术m[M].北京:机械工业出版社,2001.223-262.
  • 3..http://lib, slat. Cmu. Edu/datasets/places. Data,.
  • 4HanJ KamberM.数据挖掘概念与技术[M].北京:机械工业出版社,2002..
  • 5Forgy E. Cluster analysis of multivariate data: Efficiency vs. interpretabillty of classifications[ M]. Biometrics, 1965, 21(3) : 768.
  • 6MacQueen J. Some methods for classlfication and analysis of multivariate observations[ A]. Proceedinss of the Fifth Berkeley Symposium on Mathematical Statistics and Probability[ C]. Volume 1. Le-Cam LM, Neyman N, Ed. University of California Press, 1967.
  • 7Duda RO, Hart PE. Pattern Classification and Scene Analysis[ M].New York: John Wiley and Sons, 1973.
  • 8Selim SZ, Alsultan K. A Simulated Annealing Algorithm for the Clustering Problem[J]. Pattern Recognition, 1991, 24(10): 1003- 1008.
  • 9Fayyad U, Reina C, Bradley PS. Initialization of Iterative Refinement Clustering Algorithms[ R]. Microsoft Research Technical Report MSR-TR-98-38, June 1998.
  • 10Selim SZ, Ismail MA. K-Means-Type Algorithms: A Generalized Convergence Theorem and Charadterization of Local Optimality[ M].IEEE Trans Pattern Analysis and Machine Intelligence, 1984, PA-MI-6(1).

共引文献187

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部