期刊文献+

Direct fabrication of a microfluidic chip for electrophoresis analysis by water-assisted femtosecond laser writing in porous glass 被引量:3

Direct fabrication of a microfluidic chip for electrophoresis analysis by water-assisted femtosecond laser writing in porous glass
原文传递
导出
摘要 We report the direct fabrication of a microfluidic chip composed of two high-aspect ratio microfluidic channels with lengths of 3.5 cm and 8 mm in a glass substrate by femtosecond laser micromachining. The fabrication mainly consists of two steps: 1) writing microchannels and microchambers in a porous glass by scanning a tightly focused laser beam; 2) high-temperature annealing of the glass sample to collapse all the nanopores in the glass. Migration of derivatized amino acids is observed in the microfluidic channel by applying electric voltage across the long-migration microchannel. We report the direct fabrication of a microfluidic chip composed of two high-aspect ratio microfluidic channels with lengths of 3.5 cm and 8 mm in a glass substrate by femtosecond laser micromachining. The fabrication mainly consists of two steps: 1) writing microchannels and microchambers in a porous glass by scanning a tightly focused laser beam; 2) high-temperature annealing of the glass sample to collapse all the nanopores in the glass. Migration of derivatized amino acids is observed in the microfluidic channel by applying electric voltage across the long-migration microchannel.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第7期57-60,共4页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.61275208 and 61108015) the Program of Shanghai Subject Chief Scientist(No.10XD1404600)
关键词 Amino acids Aspect ratio ELECTROPHORESIS FABRICATION Fluidic devices Microchannels SUBSTRATES Amino acids Aspect ratio Electrophoresis Fabrication Fluidic devices Microchannels Substrates
  • 相关文献

参考文献21

  • 1G. M. Whitesides, Nature 442, 368 (2006).
  • 2A. Manz, N. Graber, and H. M. Widmer, Sens. Actuators Bl, 244 (1990).
  • 3B.-H. Jo, L. M. V. Lerberghe, K. M. Motsegood, and D.Beebe, J. Microelectromech. Syst. 9, 76 (2000).
  • 4M. S. Giridhar, K. Seong, A. Schuzgen, P. KhuJbe, N. Peyghambarian, and M. Mansuripur, Appl. Opt. 43, 4584 (2004).
  • 5Y. Li, X. Gao, M. Jiang, Q. Sun, and J. Tian, Chin. Opt. Lett. 10, 102201 (2012).
  • 6Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Jiang, Opt. Lett. 26, 1912 (2001).
  • 7A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, Opt. Lett. 26,277 (2001).
  • 8D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, App\. Phys. A Mater. Sci. Process. 79, 605 (2004).
  • 9K. Sugioka, M. Masuda, T. Hongo, Y. Cheng, K. Shihoyama, and K. Midorikawa, App\. Phys. A Mater. Sci. Process. 79, 815 (2004).
  • 10Y. Cheng, K. Sugioka, and K. Midorikawa, AppJ Surf. Sci. 248,172 (2005).

同被引文献11

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部