期刊文献+

Multilayers with high-reflectivity at 19.5 nm and low-reflectivity at 30.4 nm

Multilayers with high-reflectivity at 19.5 nm and low-reflectivity at 30.4 nm
原文传递
导出
摘要 The multilayer (ML) mirror with high-reflectivity (HR) at a specific emission line of 19.5 nm (Fe line) and low-reflectivity (LR) at 30.4 nm (He line) is needed to be designed and fabricated for observing the image of sun. Based on a variety of optimizations utilized different structures, the design is performed and the final results demonstrate that the reflectivity at 30.4 nm does not achieve minimum value when the reflectivity at 19.5 nm reaches the maximum value. The tradeoff should be done between the HR at 19.5 nm and LR at 30.4 nm. One optimized mirror is fabricated by direct current magnetron sputtering and characterized by grazing-incident X-ray diffraction (XRD) and synchrotron radiation (SR). The experimental results demonstrate that the ML achieves the reflectivity of 33.3% at 19.5 nm and of 9.6× 10-4 at 30.4 nm at the incident angle of 13°. The multilayer (ML) mirror with high-reflectivity (HR) at a specific emission line of 19.5 nm (Fe line) and low-reflectivity (LR) at 30.4 nm (He line) is needed to be designed and fabricated for observing the image of sun. Based on a variety of optimizations utilized different structures, the design is performed and the final results demonstrate that the reflectivity at 30.4 nm does not achieve minimum value when the reflectivity at 19.5 nm reaches the maximum value. The tradeoff should be done between the HR at 19.5 nm and LR at 30.4 nm. One optimized mirror is fabricated by direct current magnetron sputtering and characterized by grazing-incident X-ray diffraction (XRD) and synchrotron radiation (SR). The experimental results demonstrate that the ML achieves the reflectivity of 33.3% at 19.5 nm and of 9.6× 10-4 at 30.4 nm at the incident angle of 13°.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第13期154-157,共4页 中国光学快报(英文版)
  • 相关文献

参考文献25

  • 1J. P. Delaboudiniere, G. E. Artzner, J. Brunaud, A. H. Gabriel, J. F. Hochedez, and F. Millier, Sol. Phys. 162, 291 (1995).
  • 2V. Slemzin, S. Kuzin, 1. Zhitnik, J. P. Delaboudiniere, F. Auchere, A. Zhukov, R. Linden, O. Bugaenko, A. Ignat'ev, A. Mitrofanov, A. Pertsov, S. Oparin, A. Stepanov, and A. Afanas'ev, Sol. Sys. Res. 39, 489 (2005).
  • 3A. K. Dupree, Astrophys. J. 178, 527 (1996).
  • 4T. Yoshida and S. Tsuneta, Astrophys. J. 459, 342 (1996).
  • 5M. F. Ravet, F. Bridou, X. Zhang-Song, A. Jerome, F. Delmotte, R. Mercier, M. Bougnet, P. Bouyries, and J. P. Delaboudiniere, Proc. SPIE 5250, 99 (2004).
  • 6A. J. Corso, P. Zuppella, P. Nicolosi, D. L. Windt, E. Gullikson, and M. G. Pelizzo, Opt. Express 19, 13963 (2011).
  • 7E. Meltchakov, C. Hecquet, M. Roulliay, S. D. Rossi, Y. Menesguen, A. Jerome, F. Bridou, F. Varniere, M. F. Ravet-Krill, and F. Delmottel, Appl. Phys. A 98, 111 (2010).
  • 8D. L. Voronov, E. H. Anderson, R. Cambie, S. Cabrini, S. D. Dhuey, L. 1. Goray, E. M. Gullikson, F. Salmassi, T. Warwick, V. V. Yashchuk, and H. A. Padmore, Opt. Express 19, 6320 (2011).
  • 9E. Meltchakov, C. Hecquet, M. Roulliay, S. D. Rossi, Y. Menesguen, A. Jerome, F. Bridou, F. Varniere, M. F. Ravet-Krill, and F. Delmottel, Appl. Phys. A 98, 111 (2010).
  • 10J. H. Underwood and T. W. Barbee, Appl. Opt. 20, 3027 (1981).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部