期刊文献+

Optimization of thermoacoustic refrigerator using response surface methodology

Optimization of thermoacoustic refrigerator using response surface methodology
原文传递
导出
摘要 Thermoacoustic refrigerator (TAR) converts acoustic waves into heat without any moving parts. The study presented here aims to optimize the parameters like frequency, stack position, stack length, and plate spacing involving in designing TAR using the Response Surface Methodology (RSM). A mathematical model is developed using the RSM based on the results obtained from DeltaEC software. For desired temperature difference of 40 K, optimized parameters suggested by the RSM are the frequency 254 Hz, stack position 0.108 m, stack length 0.08 m, and plate spacing 0.0005 m. The experiments were conducted with optimized parameters and simulations were performed using the Design Environment for Low-amplitude ThermoAcoustic Energy Conversion (DeltaEC) which showed similar results. Thermoacoustic refrigerator (TAR) converts acoustic waves into heat without any moving parts. The study presented here aims to optimize the parameters like frequency, stack position, stack length, and plate spacing involving in designing TAR using the Response Surface Methodology (RSM). A mathematical model is developed using the RSM based on the results obtained from DeltaEC software. For desired temperature difference of 40 K, optimized parameters suggested by the RSM are the frequency 254 Hz, stack position 0.108 m, stack length 0.08 m, and plate spacing 0.0005 m. The experiments were conducted with optimized parameters and simulations were performed using the Design Environment for Low-amplitude ThermoAcoustic Energy Conversion (DeltaEC) which showed similar results.
出处 《Journal of Hydrodynamics》 SCIE EI CSCD 2013年第1期72-82,共11页 水动力学研究与进展B辑(英文版)
基金 financially supported by student research fund of National Institute of Technology,Tiruchirapalli–620 015, India
关键词 Design Environment for Low-amplitude ThermoAcoustic Energy Conversion (DeltaEC) OPTIMIZATION Response Surface Methodology (RSM) temperature difference thermoacoustic refrigerator (TAR) Design Environment for Low-amplitude ThermoAcoustic Energy Conversion (DeltaEC), optimization, Response Surface Methodology (RSM), temperature difference, thermoacoustic refrigerator (TAR)
  • 相关文献

参考文献17

  • 1TIJANI M. E. H., ZEEGERS J. C. H. and De WAELE A. T. A. M. Design of thermoacoustic refrigerators[J]. Cryogenics, 2002, 42(1): 49-57.
  • 2SAKAMOTO S., WATANABE Y. The experimental studies of thermoacoustic cooler[J]. Ultrasonics, 2004, 42(1-9): 53-56.
  • 3Z1NK F., VIPPERMAN J. S., SCHAEFER L. A. Envi- ronmental motivation to switch to thermoacoustic refri- geration[J]. Applied Thermal Engineering, 2010, 30(2-3): 119-126.
  • 4TU Q., CHEN Z. J. and LIU J. X. et al. Numerical simulation of loudspeaker-driven thermoacoustic refri- gerator[C]. Proceedings of the Twentieth Interna- tional Cryogenic Engineering Conference (ICEC 20). Beijing, China, 2005.
  • 5ZOONTJENS L., HOWARD C. Q. and ZANDER A. C. et al. Modeling and optimization of acoustic inertance segments for thermoacoustic devices[C]. First Austra- lasian Acoustical Societies'Conference: Acoustics 2006: Noise of Progress, Clearwater Resort. Christchurch, New Zealand, 2006, 435-441.
  • 6PAEK I., BRAUN J. E. and MONGEAU L. Evaluation of standing-wave thermoacoustic cycles for cooling applications[J]. International Journal of Refrigera- tion, 2007, 30(6): 1059-1071.
  • 7AKHAVANBAZAZ M., KAMRAN SIDDIQUI M. H. and BHAT R. B. The impact of gas blockage on the performance of a thermoacoustic refrigerator[J]. Expe- rimental Thermal and Fluid Science, 2007, 32(1): 231-239.
  • 8NSOFOR E. C., ALl A. Experimental study on perfor- mance of thermoacoustic refrigerating system[J]. App- lied Thermal Engineering, 2009, 29(13): 2672-2679.
  • 9WU F., CHEN L. and SHU A. et al. Constructal design of stack filled with parallel plates in standing-wave the- rmo-acoustic cooler[J]. Cryogenics, 2009, 49(3-4): 107-111.
  • 10KE H.-B., LIU Y.-W. and HE Y.-L. et al. Numerical simulation and parameter optimization of thermo-acou- stic refrigerator driven at large amplitude[J]. Cryoge- nics, 2010, 50(1): 28-35.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部