期刊文献+

Some pinching theorems for minimal submanifolds in S^m(1)×R 被引量:7

Some pinching theorems for minimal submanifolds in S^m(1)×R
原文传递
导出
摘要 Let Mn be an n-dimensional compact minimal submanifolds in Sin(1)× R. We prove two pinching theorems by the Ricci curvature and the sectional curvature pinching conditions respectively. In fact, we characterize the Clifford tori and Veronese submanifolds by our pinching conditions respectively. Let Mn be an n-dimensional compact minimal submanifolds in Sm(1)×R.We prove two pinching theorems by the Ricci curvature and the sectional curvature pinching conditions respectively.In fact,we characterize the Clifford tori and Veronese submanifolds by our pinching conditions respectively.
出处 《Science China Mathematics》 SCIE 2013年第8期1679-1688,共10页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.11271214)
关键词 minimal submanifolds pinching theorems Ricci curvature sectional curvature 紧致极小子流形 拼挤定理 Ricci曲率 曲率条件 n维 截面
  • 相关文献

参考文献1

二级参考文献9

  • 1Uwe Abresch,Harold Rosenberg.A Hopf differential for constant mean curvature surfaces inS 2 ×R andH 2 ×R[J]. Acta Mathematica . 2004 (2)
  • 2Li An-Min,Li Jimin.An intrinsic rigidity theorem for minimal submanifolds in a sphere[J]. Archiv der Mathematik . 1992 (6)
  • 3Daniel B.Isometric immersions into S n × R and H n × R and applications to minimal surfaces. Transactions of the American Mathematical Society . 2009
  • 4Lu Z Q.Normal scalar curvature conjecture and its applications. Journal of Functional Analysis . 2011
  • 5Chern SS,Do Carmo M,Kobayashi S,et al.Minimal submanifolds of a sphere with second fundamental form of constant length. Functional Analysis and Related Fields,Proceedings of a Conference in Honor of Professor Marshall Stone . 1970
  • 6Simons J.Minimal varieties in riemannian manifolds. Annals of Mathematics . 1968
  • 7Dillen F,Fastenakels J,Veken J.Remarks on an inequality involving the normal scalar cur-vature. Proceedings of the International Congress on Pure and Applied Differential GeometryPADGE . 2007
  • 8P.J. Smet,F. Dillen,L. Verstraelen,L. Vrancken.A pointwise inequality in submanifold theory. Arch. Math. (Brno) . 1999
  • 9Ge J Q,Tang Z Z.A proof of the DDVV conjecture and its equality case. Pacific Journal of Mathematics . 2008

共引文献6

同被引文献22

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部