期刊文献+

不同因素对交通传感器布局优化问题的影响模式 被引量:1

The Influence Patterns of Different Factors for Optimal Road Sensor Location Problems
下载PDF
导出
摘要 详细分析了传感器布局(SLP)的多种影响因素并给出相应的数学表达,在最大综合价值模型(MIVM)的基础上,给出了MIVM简化模型及其算法,并用于研究各因素对SLP问题的影响模式.数值实例结果表明,本简化模型能揭示SLP与影响因素之间的内在作用方式,能直观分析各因素对最优SLP问题的影响模式.通过各因素变化时最优SLP二维离散点的分布和运动趋势,揭示了各因素对最大综合价值和最优传感器个数的影响机理,从而当某影响因素变化时能给出相应的策略,使SLP时刻保持或趋向于最优状态. The influence factors of sensor location problem (SLP) were proposed and their mathematical formulations were got. Based on maximum integration value model (MIVM), the simple MIVM-based model and its algorithm were introduced to study the influence patterns for SLP. Numerical results show that the proposed model can illuminate the interaction of SLP and its influence factors, and it can intuitively analyze the influence pattern for those factors. According to the distribution and trend of those two-dimensional discrete points of the optimal SLP with some factor changing, the influencing mechanism between those factors with the maximum integrated value and the optimal sensor number was proclaimed, so the countermeasure could be proposed to keep the SLP with optimal status when some factor was changing.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2013年第8期1230-1237,共8页 Journal of Beijing University of Technology
基金 国家自然科学基金项目资助(61104164) 国家"863"高科技资助项目(2006AA11Z231) 北京市科技计划重点项目(D07020601400707)
关键词 交通工程 道路传感器 传感器布局 影响模式 traffic engineering road sensor sensor location influence pattern
  • 相关文献

参考文献18

  • 1ZHOU X, LIST G F. An information-theoretic sensor location model for traffic origin-destination demand estimation applications [ J ]. Transportation Science, 2010, 44(2) : 254-273.
  • 2LI R, JIA L. On the layout of fixed urban traffic detectors : an application study [ J ]. Intelligent Transportation Systems Magazine, 2009, 1 (2) : 6-12.
  • 3LI X P, OUYANG Y. Reliable sensor deployment for network traffic surveillance [ J ]. Transportation Research Part B, 2011, 45(1): 218-231.
  • 4LI X P. Reliable facility location design and traffic sensor deployment [ D ]. Urbana: Civil and Environmental Engineering, University of Illinois, 2011.
  • 5EHLERT A, BELL M G H, GROSSO S. The optimisation of traffic count locations in road networks [ J ]. Transportation Research Part B, 2006, 40(6) : 460-479.
  • 6BIANCO L, CONFESSORE G, REVERBERI P. A network based model for traffic sensor location with implications on O/D matrix estimates [J].Transportation Science, 2001, 35(1): 50-60.
  • 7TAMIN O Z, SUYUTI R. The impact of location and number of traffic counts in the accuracy of O-D matrices estimated from traffic counts under equilibrium condition: a case study in Bandung (Indonesia) [J]. Journal of the Eastern Asia Society for Transportation Studies, 2003, 5 : 1393-1407.
  • 8FEI X, MAHMASSANI H S, EISENMAN S M. Sensor coverage and location for real-time traffic prediction in large-scale networks [ J ]. Transportation Research Record: Journal of the Transportation Research Board, 2007, 2039: 1-15.
  • 9EISENSMAN S M, FEI X, ZHOU X, et al. Number and location of sensors for real-time network traffic estimation and prediction : sensitivity analysis [ J ]. Transportation Research Record: Journal of the Transportation Research Board, 2006, 1964 : 253-259.
  • 10LIU H X, DANCZYK A. Optimal sensor locations for freeway bottleneck identification [ J]. Computer-Aided Civil and Infrastructure Engineering, 2009, 24 (8) : 535- 550.

二级参考文献9

  • 1徐亮.灰色聚类分析方法在检测器空间优化研究中的应用[J].长春工程学院学报(自然科学版),2004,5(3):5-6. 被引量:2
  • 2ZHANG C C, CHEN S C, SHYU M L, et al. Adaptive background learning for vehicle detection and spatio- temporal tracking [ C ] // Fourth International Conference on Information, Communications & Signal Processing-Pacific-Rim Conference On Multimedia (ICICS-PCM). USA: Institute of Electrical and Electronics Engineers Ine, 2003, 2(12) : 797-801.
  • 3OHA C, PARK S, RITCHIE S G. A Method for identifying rear-end collision risks using inductive loop detectors [ J]. Accident Analysis and Prevention, 2006, 38: 295-301.
  • 4CHAN K S, LAM W H K. Optimal speed detector density for the network with travel time information[ J]. Transportation Research Part A, 2002, 36( 1 ) : 203-223.
  • 5SHI X H, XING J P, ZHANG J, et al. Application of dynamic traffic flow map by using real time GPS date equipped vehicles [ C ] // International Conference on ITS Telecommunications Proceedings. USA: Institute of Electrical and Electronics Engineering Inc, 2006: 1191-1194.
  • 6BENJAMIN C. Identifying the onset of congestion rapidly with existing traffic detectors[ J]. Transportation Research Part A, 2003, 37: 277-291.
  • 7LEOW W L, NI D H, HOSSEIN P N. A sampling theorem approach to traffic sensor optimization [ J]. Transactions on Intelligent Transportation Systems, 2008, 9 (2) : 369-374.
  • 8张汝华,杨晓光,储浩.信号采样理论在交通流检测点布设中的应用[J].中国公路学报,2007,20(6):105-110. 被引量:6
  • 9姜桂艳,张若旗,等.城市主干道检测器分布与交通流量预测研究[J].ITS通讯,2002,4(1):22-26. 被引量:8

共引文献2

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部