期刊文献+

高分辨宽测绘带星载合成孔径雷达频域重构算法 被引量:2

Frequency-domain spectrum reconstruction algorithm for high-resolution and wide-swath space-borne synthetic aperture radar
下载PDF
导出
摘要 针对传统星载合成孔径雷达(SAR)系统高分辨率和宽测绘带之间的矛盾,采用方位向偏置相位中心结合距离向波束扫描(ScanSAR)模式实现同时高分辨宽测绘带SAR成像,并针对雷达脉冲发射频率、平台速度和天线尺寸不满足严格约束条件导致的方位向非均匀采样提出了频域重构算法。该算法可以实现精确频谱重构,并且极大地提高了系统设计和参数选择的灵活性。五扫六通道SAR系统的频域重构算法的仿真结果显示成对回波抑制达60 dB以上,方位模糊比达-23 dB,证明了该算法的有效性。 The confliction between swath width and resolution in the routine space-borne synthetic aperture radar (SAR) can be solved by displaced phase centers multi-beam in azimuth (DPCA) with ScanSAR in across-track direction. However, the pulse repetition frequency, sensor velocity and antenna size underlie a stringent timing requirement and any deviation will result in a non-uniform sampling in space domain. The paper derives an innovative frequency-domain reconstruction algorithm, which ena bles a recovery of the unambiguous Doppler spectrum also in case of a non-uniform sampling. This algorithm is not iterative and precise, and can improve greatly the flexibility of system and parameters choice. The simulation results which illustrate the algo rithm's validity show that the spurious image from the non-uniform sampling is suppressed to below -60 dB and the azimuth ambiguity-to-signal ratio (AASR) is below -23 dB.
机构地区 新星技术研究所
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2013年第8期1939-1944,共6页 High Power Laser and Particle Beams
关键词 合成孔径雷达 方位向偏置相位中心 非均匀采样 均匀谱重构 synthetic aperture radar displaced phase centers multi beam in azimuth non-uniform sampling uniform spectrum reconstruction
  • 相关文献

参考文献10

  • 1Currie A,Brown M A.Wide-swath SAR[J].IEE Proc F,1992,139(2):122-135.
  • 2Cantofio L J.Space-based radar handbook[M].Boston:Artech House,1989:127-132.
  • 3Griffiths H D,Mancini P.Ambiguity suppression in SARs using adaptive array techniques[C]//IEEE Proceedings of IGARSS.1991,11(2):1010-1018.
  • 4Callaghan G D,Longstaff I D.Wide-swath.space-borne SAR and range ambiguity[C]//IEE Proceedings of Radar 97.1997,1:248-252.
  • 5Gebert N,Krieger G,Moreira A.SAR signal reconstruction from non-uniform displaced phase center sampling in the presence of perturba-tions[J].IEEE Trans on Instrumentation and Measurement,2005,46(3):1034-1037.
  • 6Krieger G,Gebert N,Moreira A.Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J].IEEE Ge-oscience and Remote Sensing Letters,2004,1(4):260-264.
  • 7Currie A.Wide-swath SAR imaging with multiple azimuth beams[C]//IEE Colloquium on Synthetic Aperture Radar.1989,1:103-108.
  • 8Krieger G,Gebert N,Younis M,et al.Advanced concepts for ultra-wide-swath SAR imaging[C]//Proceedings of EUSAR.2008,2:31-34.
  • 9王小青,郭琨毅,盛新庆,朱敏慧.基于距离向多孔径接收的宽测绘带SAR成像方法的研究[J].电子与信息学报,2004,26(5):739-745. 被引量:15
  • 10郭琨毅,王小青,盛新庆.距离向多孔径接收宽测绘带SAR三种成像算法比较[J].电波科学学报,2005,20(1):119-124. 被引量:6

二级参考文献10

  • 1A Currie, M A Brown. Wide-swath SAR [J]. IEE PROCEEDINGS-F, 1992,139(2) : 122-135.
  • 2H A Malliot. Wide swath SAR and radar altimeter[A]. Proceedings of IGARSS'91 Symp[C]. Helsinki,1993,87-97.
  • 3G D Callaghan, I D Longstaff. Wide-swath space-born SAR using a quad-element array[J], IEE Proc.-Radar, Sonar Navg, 1999, 146(3):159-165.
  • 4H D Griffiths, P Maneini. Ambiguity suppression in SARs using adaptive array techniques [A]. Proceedings of IGARSS'91 Symp[C]. Helsinki, 1991,1015-1018.
  • 5Currie A, Brown M A. Wide-swath SAR. IEE Proc.-F, 1992, 139(2): 122-135.
  • 6Callaghan G D, Longstaff I D. Wide-swath space-borne SAR using a quad-element array. IEE Proc.-F, 1999, 146(3): 159-165.
  • 7Griffiths H D, Mancini P. Ambiguity suppression in SARs using adaptive array techniques. Proc.of IGARSS'91 Symp., Helsinki University of Technology, Espo, Finland, 1991: 1015-1018.
  • 8李庆扬.数值分析,第3版,第七章[M].武汉:华中理工大学出版社,1986年12月..
  • 9雷万明,刘光炎,黄顺吉.基于波束形成的分布式卫星SAR成像[J].电波科学学报,2002,17(1):64-68. 被引量:10
  • 10王小青,郭琨毅,盛新庆,朱敏慧.基于距离向多孔径接收的宽测绘带SAR成像方法的研究[J].电子与信息学报,2004,26(5):739-745. 被引量:15

共引文献17

同被引文献22

  • 1王虹现.ISAR成像新方法研究[D].西安:西安电子科技大学,2011:5-9.
  • 2Herman M A, Strohmer T. High resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009,S7(6): 2275-2284.
  • 3Yoon Y S, Amin M G: Compressed sensing technique for high-resolution radar imagin[C]//Proc of SPIE. 2008: 69681A.
  • 4Thorsos E I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum[J]. The Journal o f the Acoustical Society of America, 1988,83(1):78-92.
  • 5Beckmann P, Spizzichino A. The scattering of electromagnetic waves from rough surfaces[M]. Ncrwood, MA: Artech Hmst, Inc. , 1987.
  • 6Chen S S, Donoho D I., Saunders M A. Atomic decomposition by basis pursuit [J]. SIAM Journal of &ientiJlc Compuling, 1998, 20 (1):33- 61.
  • 7Swamy K C T, Sarma A D, Srinivas V S, et al. Accuracy evaluation of estimated ionospheric delay of GPS signals based on klobuchar and IRI-2007 models in low latitude region[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6) : 1557-1561.
  • 8Apaydin G, Sevgi L. The split-step-fourier and finite-element-based parabolic equation propagation-prediction tools: canonical tests, system- atic comparisons, and calibration[J]. IEEEAntennas and Propagation Magazine, 2010, 52(3): 66-79.
  • 9Sirkova I. Propagation factor and path loss simulation results for two rough surface reflection coefficients applied to the microwave ducting propagation over the sea[J]. Progress in Electromagnetics Research M, 2011, 17: 151-166.
  • 10Silva M A N, Costa E, Liniger M. Analysis of the effects of irregular terrain on radio wave propagation based on a three dimensional para bolic equation[J]. IEEE Trans on Antennas and Propagation, 2012, 60(4) : 2138-2143.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部