期刊文献+

热回收型转轮复合型除湿系统的实验研究 被引量:7

Experimental Research on Power Consumption of the Heat Recovery Type Refrigerating-rotary United Dehumidification System
下载PDF
导出
摘要 本文在转轮除湿与制冷除湿系统上增加热回收系统,降低转轮再生功耗的同时,实现转轮再生排风的循环利用,减少转轮再生排风管道,节省工程安装量。通过实验测试,与普通转轮复合除湿系统的相比,不同进风工况下,热回收型转轮复合除湿系统的总功耗降低约6%~20%。热回收型转轮复合除湿系统中热回收量约占总功耗的22%,其中板式热回收占总功耗的18%,冷凝热回收约占总功耗的4%,处理再生排风的功耗约占总功耗的8%,因此也可仅增加板式热回收来实现再生排风的循环利用。 Adding heat recovery system to the refrigerating rotary combined dehumidification system, the reactiva tion air of rotor dehumidifier becomes recycled, and the power consumption on reactivation also be decreased; At the same time, the reactivation air ducts are reduced, which can save the work of installation. The test data under different conditions confirm : The power consumption of the heat recovery type refrigerating rotary united dehumidi fication system is 6 20% less than the common type. The recovered energy is about 2:2% of the total power consump tion in the heat recovery type refrigerating rotary united dehumidification system, 18% of which is belong to plate type heat recovery, while the other 4% is condensing heat recovery. The power consumption on handing reactivation air is about 8% of the total power consumption, so it is feasible to recycle the exhaust air of rotor simply by increas ing the plate type heat recovery exchanger.
出处 《制冷》 2013年第2期5-9,共5页 Refrigeration
基金 2011年省民营科技企业创新项目(2011B070500019)
关键词 转轮除湿 制冷除湿 板式热回收 冷凝热回收 实验研究 Rotor dehumidifier Refrigeration dehumidification Plate type energy recovery heat exchanger Con-densing heat recovery exchanger Experimental research
  • 相关文献

参考文献2

二级参考文献36

  • 1方玉堂,蒋赣.转轮除湿机吸附材料的研究进展[J].化工进展,2005,24(10):1131-1135. 被引量:27
  • 2Wurm J, Kosar D, Clemens T. Solid desiccant technology review [J]. Bulletin of the International Institute of Refrigeration, 2002, 82 (3): 2-31.
  • 3王如竹.制冷学科进展研究及发展报告[M].北京:科学出版社.2007:498-533.
  • 4Mazzei P, Minichielllo F, Palma D. HVAC dehumidification systems for thermal comfort: a critical review [J]. Applied Thermal Engineering, 2005, 25 (5-6) : 677-707.
  • 5Waugaman D G, Kini A, Kettleborough C F. A review of desiccant cooling systems [J]. Journal of Energy Resources Technology, 1993, 115:1-8.
  • 6Tokarev M, Gordeeva L, Romannikov V, et al. New composite sorbent CaCI2 in mesopores for sorption cooling/heating [J]. International Journal of Thermal Sciences, 2002, 41 (5) : 470-474.
  • 7Tosimi K, Hioshi O. Active gas adsorbing element and method of manufacturing: USA, 4886769 [P]. 1989.
  • 8Aristov Y I, Restuccia G, Tokarev M M, et al. Selective water sorbents for multiple applications. II. CaCl2 confined to expanded vemaiculite [J] React. Kinet. Catal. L., 2000, 71 (2) : 377-384.
  • 9Gonzalez J C, Molina-Sabio M, Rodriguez-Reinoso F. Sepiolite-based adsorbents as humidity controller [J]. Applied Clay Science, 2001, 20 (3): 111-118.
  • 10Mathiowitz E, Jacob J S, Jong Y S, et al. Novel desiccants based on designed polymeric blends [J]. Journal of Applied Polymer Science, 2001, 80 (3) : 317-327.

共引文献39

同被引文献104

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部