期刊文献+

基于改进AdaBoostSVM的JPEG图像多特征融合隐写检测方法

Universal Steganalysis Method for Multi-feature Fusion Based on Improved AdaBoostSVM JPEG Image
下载PDF
导出
摘要 传统的JPEG图像盲隐写检测算法主要是通过单个或是两个特征集融合的方式来设计。而对于多个特征集,如何从这些特征集中选取一个较优的组合进行融合,目前尚处于研究阶段。本文提出一种基于改进AdaBoostSVM的多特征融合隐写检测方法,并通过设计多个实验来验证算法的性能。通过实验比较,在JPEG图像隐写多特征融合盲检测中,该方法能够在有限的计算复杂度下得到一个融合效果较优的特征组合。 Traditional blind steganalysis algorithm for JPEG image is mainly designed by a single or two feature-sets fusion.However,for multiple feature sets,how to select an optimum combination to fuse from these feature sets is still at a research stage.This paper proposes a universal steganalysis method for multi-feature fusion based on the improved AdaBoostSVM JPEG image,and many experiments are designed to verify the performance of the algorithm.By experimental comparison,it is found that this method can obtain a feature combination of optimum fusion effects with limited computational complexity in JPEG-imaged blind steganalysis for multi-feature fusion.
出处 《计算机与现代化》 2013年第7期120-122,238,共4页 Computer and Modernization
基金 福建省科技创新平台项目(2009J1007) 福建省自然科学基金资助项目(2010J01331)
关键词 AdaBoostSVM 多特征融合 隐写检测 特征组合 AdaBoostSVM multi-feature fusion steganalysis feature combination
  • 相关文献

参考文献11

  • 1Somorjai R L, Dolenko B, Baumgartner R. Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: Curses, caveats, cautions[J]. Bioinformatics, 2003,19(12):1484-1491..
  • 2王朔中,张新鹏,张卫明.以数字图像为载体的隐写分析研究进展[J].计算机学报,2009,32(7):1247-1263. 被引量:77
  • 3边肇祺,张学工.模式识别(第2版)[M].北京:清华大学出版社,2002:83-117.
  • 4Luo X Y, Wang D S, Wang P, et al. A review on blind detection for image steganography[J]. Signal Processing, 2008,88(9):2138-2157..
  • 5杨健,杨静宇,王正群,郭丽.一种组合特征抽取的新方法[J].计算机学报,2002,25(6):570-575. 被引量:25
  • 6Valiant L G. A theory of the learnable[J]. Communications of the ACM, 1984,27(11):1134-1142..
  • 7Schapire R E. The strength of weak learnability[J]. Machine Learning, 1990,5(2):197-227..
  • 8Robert E Schapire, Yoram Singer. Improved boosting algorithms using confidence-rated predictions[J]. Machine Learning, 1999,37(3):297-336..
  • 9Li X, Wang L, Sung E. AdaBoost with SVM-based component classifiers[J]. Engineering Applications of Artificial Intelligence, 2008,21(5):785-795..
  • 10Guo Song, Gu Guo-chang, Liu Hai-bo, et al. A new AdaboostSVM algorithm based on multi-feature fusion for multi-pose face detection[C]// Proceedings of the 3rd International Congress on Image and Signal Processing. 2010,4:1735-1739..

二级参考文献10

共引文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部