期刊文献+

基于实用参数控制的翼型参数化方法 被引量:4

A Geometric Representation of Airfoil Based on Applied Parameters
下载PDF
导出
摘要 在翼型的优化设计中,通常要对二元翼型进行参数化方法表示,其目标是利用较少的参数得到足够大的设计空间。分析了Hicks-Henne型函数叠加法和PARSEC几何参数法的特点和不足,提出了利用厚度、弯度等实用参数进行翼型定义的方法,该方法可以通过厚度和弯度参数更加直观地理解翼型轮廓和翼型基本气动性能。通过分析3种方法对5种翼型的最小二乘拟合结果得出结论:实用参数法的误差分布比较平均,且能够比另外两种方法更精确地表示翼型。 Geometric representation of 2-D airfoil is a necessary procedure in the optimization and design of airfoils. The goal of representation is that more airfoils can be obtained by using less parameter. The characters and disadvantages of Hicks-Henne shape function method and PARSEC method are analyzed. A geometric representation of airfoil was proposed, which is defined by applied parameters-relative thickness, relative camber, etc. The method can represent the outline of airfoils; aerodynamic characters can be qualitatively analyzed through thickness, camber, etc. It was concluded by analyzing the least-square regression outcome of five airfoils in the three geometric methods. The conclusion is that the residuals of applied geometric method distributes averagely and represents airfoils more accurately than the other two methods.
出处 《飞机设计》 2013年第3期1-4,共4页 Aircraft Design
关键词 翼型 参数化 实用参数 误差分布 airfoil geometric representation applied parameters residual distribution
  • 相关文献

参考文献12

二级参考文献53

  • 1林勇刚,李伟,崔宝玲.基于SVR风力机变桨距双模型切换预测控制[J].机械工程学报,2006,42(8):101-106. 被引量:13
  • 2王晓璐,朱自强.高性能无人机翼型的杂交优化设计[J].航空学报,2007,28(4):839-844. 被引量:7
  • 3Levin O, Wei S. Optimization of a flexible low Reynolds number airfoil, AIAA 2001-0125[R]. US: AIAA, 2001.
  • 4Kellogg M I, Bowman W J. Parametric design study of the thickness of airfoils at Reynolds numbers from 60000 - 150000, AIAA 2004-1054[R]. US: AIAA, 2004.
  • 5Muller T J, Pohlen L J, Conigliaro PE, et al. The influence of free stream disturbances on low Reynolds number airfoil experiments[J]. Experiments in Fluids, 1983, 1:3 - 14.
  • 6Lissaman P B S. Low Reynolds number airfoils[J ]. Annual Reviews of Fluid Mechnics, 1983, 15:223- 239.
  • 7Wei S, Mats B, Daniel L. Flapping and flexible wings for biological and micro air vehicles [J ]. Progress in Aerospace Sciences, 1999, 35(5:) :455 - 505.
  • 8Hillier R, Cherry N J. The effects of stream turbulence on separation bubbles [ J ]. Journal of Wind Engineering and Industrial Aerodynamics, 1981, 8(14) :375- 386.
  • 9Holland J. Adaptation in natural and artificial system[M]. Cambridge: MIT Press, 1992.
  • 10Hicks R M, Henne P A, Wing design by numerical optimization [J]. Journal of Aircraft, 1978, 15(7) :407 - 412.

共引文献105

同被引文献56

  • 1尹建华,任建娅,仪明旭.Legendre小波求解非线性分数阶Fredholm积分微分方程[J].辽宁工程技术大学学报(自然科学版),2012,31(3):405-408. 被引量:21
  • 2苟仲秋,宋笔锋.一种计及气动和隐身约束的结构两级优化设计方法[J].系统工程理论与实践,2006,26(3):135-140. 被引量:5
  • 3张科施,韩忠华,李为吉,李响.基于近似技术的高亚声速运输机机翼气动/结构优化设计[J].航空学报,2006,27(5):810-815. 被引量:26
  • 4国家能源局.预计今年底全国风电并网装机容量超9000万千瓦[Z].新华网,2014.
  • 5Lauha F, Steve S, Sgruti S, et al. Global wind report annual mark- ket update 2013 [Z]. Global Wind Energy Council, 2012.
  • 6Lewis J I. Technology acquisition and innovation in the developi- ing world: wind turbine development in China and India[J]. Stud- ies in Comparative International Development, 2007, 42(3-4):208 -232.
  • 7Timilsina G R, Kooten G C, Narbe P A. Global wind power deve- lopment: economics and policies[J]. Energy Policy, 2013, 61: 642 -652.
  • 8Thomas E, Patrik S. Wind power, regional development and ben- efit-sharing: the case of Northern Sweden[J]. Renewable and Sust -ainable Energy Reviews, 2015, 47:476 -485.
  • 9Mat:hew S. Wind Energy-Fundamental, Resource Analysis and Economic[M]. Bedim Springer Berlin Heidelberg, 2006, 11-43.
  • 10Tangle J L, Somers D M. NREL airfoil families for HAWT' s[M]. National Renewable Energy Laboratory, 1995.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部