摘要
利用斯特拉托诺维奇近似得到关联函数C(s)表达式的基础上,分析高斯噪声和非高斯噪声对系统性质的影响。结果表明:①C(s)随非高斯噪声参数Q的增大出现峰值,表明随Q的增大,输出x的涨落的衰减先慢后快;②高斯噪声强度D较小时,C(s)随D的增大而增大,但D超过一定数值时,C(s)不再随D的增大而变化;③C(s)随自关联时间τ的增大出现极大值,且关联强度λ越小,该极大值越明显;④λ取值较小时,C(s)随非高斯噪声参数q的增大而增大,λ取值较大时,C(s)随q的增大而减小,表明由于λ的取值不同,q既可以延缓也可以加快x涨落的消退。
Using Stratonovich approximate, the effects of non - Gaussian and Gaussian noises on the correlation function C(s) of an optical bistable system is investigated. It is found: (1) There exists a peak in the curve of C(s) versus non -Gaussian noise parameter Q, this means the decay rate of x fluctuation slow firstly, and then fast with increasing Q. (2) As Gaussian noise intensity D has small values, C (s) increases with increasing D, and C(s) has no changes with increasing D as D has large values. (3) C(s) has a maximum with increasing self- correlation time T, and the smaller correlation intensity A, the more obvious C(s) maximum. (4) As correlation intensity A has small values, C(s) increases with increasing non - Gaussian parameter q, and C( s ) decreases with increasing q as A has large values, namely, the parameter q can either accelerate or delay the fluctuation decay of x for different A values.
出处
《安徽理工大学学报(自然科学版)》
CAS
2013年第2期79-82,共4页
Journal of Anhui University of Science and Technology:Natural Science
关键词
光学双稳系统
关联函数
非高斯噪声
高斯噪声
optical bistable system
the correlation function
non-Gaussian noise
Gaussian noise