期刊文献+

两类噪声对光学双稳系统性质的影响

Effects of Two Kinds of Noises on Stationary Properties of an Optical Bistable System
下载PDF
导出
摘要 利用斯特拉托诺维奇近似得到关联函数C(s)表达式的基础上,分析高斯噪声和非高斯噪声对系统性质的影响。结果表明:①C(s)随非高斯噪声参数Q的增大出现峰值,表明随Q的增大,输出x的涨落的衰减先慢后快;②高斯噪声强度D较小时,C(s)随D的增大而增大,但D超过一定数值时,C(s)不再随D的增大而变化;③C(s)随自关联时间τ的增大出现极大值,且关联强度λ越小,该极大值越明显;④λ取值较小时,C(s)随非高斯噪声参数q的增大而增大,λ取值较大时,C(s)随q的增大而减小,表明由于λ的取值不同,q既可以延缓也可以加快x涨落的消退。 Using Stratonovich approximate, the effects of non - Gaussian and Gaussian noises on the correlation function C(s) of an optical bistable system is investigated. It is found: (1) There exists a peak in the curve of C(s) versus non -Gaussian noise parameter Q, this means the decay rate of x fluctuation slow firstly, and then fast with increasing Q. (2) As Gaussian noise intensity D has small values, C (s) increases with increasing D, and C(s) has no changes with increasing D as D has large values. (3) C(s) has a maximum with increasing self- correlation time T, and the smaller correlation intensity A, the more obvious C(s) maximum. (4) As correlation intensity A has small values, C(s) increases with increasing non - Gaussian parameter q, and C( s ) decreases with increasing q as A has large values, namely, the parameter q can either accelerate or delay the fluctuation decay of x for different A values.
作者 陶华拥 王兵
出处 《安徽理工大学学报(自然科学版)》 CAS 2013年第2期79-82,共4页 Journal of Anhui University of Science and Technology:Natural Science
关键词 光学双稳系统 关联函数 非高斯噪声 高斯噪声 optical bistable system the correlation function non-Gaussian noise Gaussian noise
  • 相关文献

参考文献14

  • 1LUO X,ZHU S. Stochastic resonance driven by two dif-ferent kinds of colored noise in a bistable system [ J].Phys. Rev.E, 2003, 67: 021104(12).
  • 2HAN L B,CAO L,Wu D J, et al. Stochastic resonancefor bias signal - modulated noise in a single - mode laser[J]. Physica A, 2006,366; 159 - 166.
  • 3ZHANG L,CAO L,WU D J. Steady - state analysis ofa single 一 mode laser with cross - correlation betweenthe real and imaginary parts of pump noise [ J]. PhysicaA,2006, 363: 181 -186.
  • 4BORLAND L. Ito - Langevin equations within general-ized thermostatistics [ J]. Phys. Lett. A,1998,245 :67 -72.
  • 5FUENTES M A,WIO H S, Toral R. Effective Mark-ovian aproximation for nonGaussian noises : a path inte-gral approach [ J]. Physica A:2002, 303 ; 91 - 104.
  • 6FUENTES M A, TORAL R,WIO H S. Enhancement ofStochastic Resonance : The role of Non Gaussian Noises[J]. Physica A, 2001,295: 114-122.
  • 7GOSWAMI G,MAJEE P, GHOSH P K,et al. Coloredmultiplicative and additive non - Gaussian noise - driv-en dynamical system : mean first passage time [ J].Physica A, 2007, 374: 549 -558.
  • 8WU D, ZHU S Q. Stochastic resonance in a bistablesystem with time - delayed feedback and non - Gaussiannoise [J]. Phys. Lett. A,2007, 363: 202-212.
  • 9宁丽娟,徐伟.光学双稳系统中的随机共振[J].物理学报,2007,56(4):1944-1947. 被引量:11
  • 10DU L C, MEI D C. Intensity correlation function of anoptical bistable system subjected to cross — correlatednoises [ J]. Phys. Lett. A,2008,372: 5 529 -5 533.

二级参考文献31

  • 1靳艳飞,徐伟,李伟,徐猛.具有周期信号调制噪声的线性模型的随机共振[J].物理学报,2005,54(6):2562-2567. 被引量:23
  • 2Porra J M 1997 Phys.Rev.E 55 6533
  • 3Dhara A K,Mukhopadhyay T 1999 Phys.Rev.E 60 2727
  • 4Mitaim S,Kosko B 1998 Proj.IEEE 86 2152
  • 5Jung P 1995 Phys.Lett.A 220 219
  • 6Xu B,Duan F,Bao R et al 2002 Chaos Solitons Frac.13 633
  • 7Kapitaniak T 1993 Chaos Solitons Frac.3 405
  • 8Ko J Y,Otsuka K,Kubota T 2001 Phys.Rev.Lett.86 4025
  • 9Matyjaskiewicz S,Krawiecki A,Holyst J A et al 2001 Phys.Rev.E 63 026215
  • 10Gibbs M,McCall S L,Venkatesan T N C 1976 Phys.Rev.Lett.36 1135

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部