期刊文献+

3种念珠菌对氟康唑耐药的易感性及耐药机制比较 被引量:11

Comparison of three Candidaspecies in terms of susceptibility to fluconazoles and mechanisms of resistance to fluconazoles
下载PDF
导出
摘要 目的研究比较3种念珠菌对氟康唑耐药的易感性及其体外诱导耐药株的耐药机制。方法选取同一患者中同时分离的对氟康唑敏感的白念珠菌、光滑念珠菌和热带念珠菌各1株,在体外氟康唑的作用下诱导其成为耐药株。采用罗丹明6G试验比较敏感株与耐药株的外排泵作用,RT-PCR检测外排相关基因CDR1、CDR2以及靶酶编码基因ERG11的表达,并对ERG11基因进行PCR扩增和测序,同时通过罗丹明123试验对3种念珠菌的线粒体膜电位(ΔΨm)进行检测。结果光滑念珠菌最易被氟康唑诱导为耐药株,其CDR1的过度表达引起外排泵作用增强。白念珠菌和热带念珠菌的诱导耐药株以ERG11表达增加为主,其中白念珠菌的ERG11存在V437I、A430V、S263L和T128K突变位点。此外,白念珠菌和光滑念珠菌的诱导耐药株表现为呼吸缺陷。结论不同念珠菌对氟康唑耐药的易感性不同,耐药机制也存在差异。 Objective To investigate the susceptibility and mechanisms of resistance to fluconazoles in clinical isolates of three Candidaspecies.Methods One strain each of Candida albicans,Candida glabrata and Candida tropicalis was isolated from the same patient simultaneously.These three strains were induced to resist to fluconazole in vitro.Efflux of rhodamine 6G was performed to evaluate the effects of efflux pumps.The expression levels of transporter genes CDR1,CDR2 and azole antifungal target gene ERG11 were examined by real time RT-PCR.The sequence of ERG11 was determined by PCR based DNA sequencing.Meanwhile,rhodamine 123 was used to analyze the respiratory capacity of the three Candida strains.Results Efflux pumps showed stronger effects in fluconazole-resistant C.albicans and C.glabratathan in susceptible isolates,but no obvious change was observed in resistant strain of C.tropicalis.CDR1 was significantly overexpressed in the resistant strain of C.glabrata,while ERG11 was overexpressed in C.albicans and C.tropicalis.ERG11 mutations V437I,A430V,S263L and T128K were identified only in the resistant strain of C.albicans.Fluconazole-resistant C.albicans and C.glabrata were respiratory deficient.Conclusions The three Candida species showed different performance in terms of susceptibility to fluconazole and the mechanisms of fluconazole resistance.
出处 《中国感染与化疗杂志》 CAS 北大核心 2013年第4期296-301,共6页 Chinese Journal of Infection and Chemotherapy
基金 上海交通大学医学院科研基金项目(12XJ10012)
关键词 念珠菌 氟康唑 外排泵 ERG11 呼吸缺陷 Candidaspp. fluconazole transporter ERG11 respiratory deficiency
  • 相关文献

参考文献23

  • 1Pfaller MA, Diekema DJ. Epidemiology of invasive candidia- sis: a persistent public health problem[J]. Clin Microbiol Rev, 2007, 20(1): 133-163.
  • 2Li I., Redding S, Dongari-Bagtzoglou A. Candida glabrata, an emerging oral opportunistic pathogen [J] J Dent Res, 2007, 86(3): 204 215.
  • 3Pappas PG, Rex JH, Lee J, et al. A prospective observation al study of candidemia: epidemiology, therapy, and influ- ences on mortality in hospitalized adult and pediatric patients [J]. Clin Infect Dis, 2003, 37(5) : 634-643.
  • 4Rex JH, Walsh TJ, Sobel JD, et al. Practice guidelines for the treatment of candidiasis. Infectious Diseases Society of America[J]. Clin Infect Dis, 2000, 30(4): 662-678.
  • 5Silva S, Negri M, Henriques M, et al. Candida glabrata, Candida parapsilosis and Candida tropicalis : biology, epi- demiology, pathogenicity and antifungal resistance[J]. FEMS Microbiol Rev, 2012, 36(2): 288-305.
  • 6Sanguinetti M, Posteraro B, Fiori B, et al. Mechanisms of azole resistance in clinical isolates f Candida glabrata collect- ed during a hospital survey of antifungal resistance[J]. Anti microb Agents Chemother, 2005, 49(2) : 668-679.
  • 7Bennett JE, Izumikawa K, Marr KA. Mechanism of increased flu- conazole resistance in Candida glabrata during prophylaxis [J]. Antimicrob Agents Chemother, 2004, 48 (5): 1773 1777.
  • 8Sanglard D, Ischer F, Bille J. Role of ATP-binding cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata [J]. Antimicrob Agents Chemother, 20(11, 45(4): 1174-1183.
  • 9Vermitsky JP, Edlind TD. Azole resistance in Candida gla brata : coordinate upregulation of multidrug transporters and evidence for a Pdrl-like transcription factor[J]. Antimicrob Agents Chemother, 2004, 48(10): 3773-3781.
  • 10Ferrari S, Sanguinetti M, De Bernardis F, et al. Loss of mi- tochondrial functions associated with azole resistance in Can- dida glabrata results in enhanced virulence in mice[J]. Anti- microb Agents Chemother, 2011, 55(5) :1852 1860.

二级参考文献42

  • 1Scheffier IE. A century of mitochondria research: Achievements and perspectives. Mitochondrion, 2001, 1(1): 3-31.
  • 2Kibertis PA. Mitochondria makes a comeback. Science, 1999, 283:1475-81.
  • 3Kagawa Y, Cha SH, Hasegowq K, et al. Regulation of energy metabolism in human cell in aging and diabetis:F1F0, mtDNA, UCP and ROS. Biochem Biophys Res Commun, 1999, 266 (3): 662-76.
  • 4Wallace DC. A mitochondrial pradigm of metabolic and degenerative diseases, aging and cancer: A dawn for evolutinary medicine. Annu Rev Genet, 2005, 39:359-407.
  • 5Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol, 2007, 292:C670-86.
  • 6Chance B, Sies H, Boveris A. Hydroperioxide metabolism in mammalian oranges. Physiol Rev,. 1979, 59(3): 527-605.
  • 7Giorgio M, Migliaccio E, Orsini F, et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis.Cell, 2005, 122: 221-33.
  • 8Skulachev VP. A biochemical approach to the problem of aging: "Megaproject" on membrane-penetrating ions. The first results and prospects. Biochemistry (Moscow), 2007, 72, 12:1385-96.
  • 9Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep, 1997, 17(3): 3-8.
  • 10Liu SS. Generation, partitioning, targeting and functioning of superoxide in mitochondria. Biosci Rep, 1997, 17: 259- 72.

共引文献39

同被引文献100

  • 1ARTEMIS念株菌属耐药性监测协作组,朱德妹,张婴元,汪复.中国5所医院念珠菌属对氟康唑和伏立康唑的耐药性监测[J].中国感染与化疗杂志,2007,7(1):14-18. 被引量:47
  • 2孙仁美,宋秋荷,唐玮,王鲁,叶庆佾.抗白念珠菌芽管单克隆抗体的制备及特性鉴定[J].细胞与分子免疫学杂志,2007,23(4):350-352. 被引量:1
  • 3血液病/恶性肿瘤患者侵袭性真菌感染的诊断标准与治疗原则(修订版)[J].中华内科杂志,2007,46(7):607-610. 被引量:249
  • 4Kothavade R J , Kura M M, Valand A G, et al. Candida tropicalis , its prevalence, pathogenicity and increasing resistance to fluconazole [J]. J Med Microbiol, 20 10 ,59 ( 8) : 873 - 80.
  • 5Jiang C, Dong D F, Yu B Q, et al. Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China [Jl. J Antimicrob Chemother,2013,68(4) :778 -85.
  • 6Silva S, Hooper S J, Henriques M, et al. The role of secreted aspartyl proteinases in Candida tropicalis invasion and damage of oral mucosa [J]. Clin Microbiol Infect, 2011 , 17 ( 2) : 264 - 72.
  • 7Pfaller M A, Diekema D J. Epidemiology of invasive candidiasis: a persistent public health problem [J] . Clin Microbiol Rev, 2007 ,20 (1) :133 -63.
  • 8Vandeputte P, Larcher G, Berges T , et al. Mechanisms of azole resistance in a clinical isolate of Candida tropicalis [J]. Antimicrob Agents Chemother ,2005,49 (11):4608 - 15.
  • 9Sanglard D, Ischer F, Koymans L, et al. Amino acid substitutions the cytochrome P450 lanosterol 14a-demethylase( CYP5IAI) from azole resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents [J]. Antimicrob Agents Chemother,1998,42(2) :241 -53.
  • 10Kim J, Sudbery P. Candida albicans, a major human fungal pathogen [ J ]. J Microbiol, 2011,49 ( 2 ) : 171- 177.

引证文献11

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部