期刊文献+

化工过程强制去噪小波滤波最优分解层数的选取 被引量:1

Choice of the Optimal Decomposition Level of Wavelet Forced De-noising in Chemical Industry
下载PDF
导出
摘要 强制去噪小波滤波能有效降低化工过程测量数据的误差,然而该滤波对误差的校正效果与分解层数有很大关系。因此提出用高频系数和低频系数的相关系数和相邻两层高频系数方差之比共同判断最优分解层。通过总结2个化工数据校正例子的计算结果,得出了相关系数和方差比的阈值。在庚烷催化反应模型中数据校正的结果表明,所提出的2个判断参数能有效确定强制去噪滤波的最优分解层。 Wavelet forced de-noising have a good performance on chemical measurements error reduction,and the error reduction effect is related to the decomposition levels.In the paper,two judgement parameters,the ratio of variance of high frequency coefficients and the correlation coefficients between high frequency coefficients and low frequency coefficients,are proposed to judge the optimal decomposition level,and the thresholds of the two judgement parameter are given by summary the calculation results from two chemical data reconciliation examples.The performance of two judgement parameters is illustrated by applied in a heptane catalytic reaction model,results show that two judgement parameters give promising results for the choice of the optimal decomposition level.
出处 《青岛科技大学学报(自然科学版)》 CAS 北大核心 2013年第3期260-264,共5页 Journal of Qingdao University of Science and Technology:Natural Science Edition
关键词 强制去噪 最优分解层 相关系数 方差比 wavelet forced de-noising the optimal decomposition level correlation coefficients the ratio of variance
  • 相关文献

参考文献8

二级参考文献11

  • 1彭玉化.小波变换与工程运用[M].北京:科学出版社,2000..
  • 2Seok J W,Bae K S.Speech Enhancement with Reduction of Noise Components in the Wavelet Domain[A].Proc of the ICASSP[C].Munich,1997,2:1323-1326.
  • 3Lu C T,Wang H C.Enhancement of Single Channel Speech Based on Masking Property and Wavelet Transform[J].Speech Communication,2003,41(2-3):409-427.
  • 4Medina C A,Aleaim A,Apolinario J A.Wavelet De-noising of Speech Using Neural Networks for Threshold Selection[J].Electronics Letters,2003,39(25):1869-1871.
  • 5Mallat S G,杨力华.信号处理的小波导引[M].北京:机械工业出版社,2002:340-358.
  • 6Donoho D L.De-noising by Soft-thresholding[J].IEEE Trans on Information Theory,1995,41(3):613-627.
  • 7Zhang X P,Desai M T.Adaptive De-noising Based on SURE Risk[J].IEEE Signal Processing Letters,1998,5(10):265-267.
  • 8Vautard R,Yiou P,Ghil M.Singular-spectrum Analysis:A Toolkit for Short Noisy Chaotic Signals[J].Physica D,1992,58(1-4):95-126.
  • 9Alexandros Leontitsis,Tassos Bountis,Jenny Pagge.An Adaptive Way for Improving Noise Reduction Using Local Geometric Projection[J].Chaos,2004,14(1):106-110.
  • 10李尔国,俞金寿.PCA在过程故障检测与诊断中的应用[J].华东理工大学学报(自然科学版),2001,27(5):572-576. 被引量:19

共引文献51

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部