期刊文献+

用MATLAB模拟几类非线性偏微分方程组的定性性质 被引量:2

下载PDF
导出
摘要 非线性偏微分方程组广泛应用于物理、化学、生态学、经济学等领域,对它的研究有重要的理论意义和应用价值。本文阐述了几类偏微分方程组的爆破、熄灭、周期性等性质,并用MATLAB软件模拟了有关结果。事实上,MATLAB模拟数值结果不但能验证理论的正确性,还能给理论结果的提出提供依据。
作者 陆晨 陈玉娟
机构地区 南通大学理学院
出处 《牡丹江大学学报》 2013年第7期131-135,共5页 Journal of Mudanjiang University
基金 大学生实践创新计划项目(编号:2012JSSPITP1493)
  • 相关文献

参考文献20

  • 1M. Escobedo and M. A. Herrero, A semilinear parabolic system in a bounded domain, Ann. Mat. Pura Appl.(4)CLXV(1993), 307-315.
  • 2V. A. Galaktionov, S. P. Kurdyumov and A. A. Samarskii, A parabolic system of quasi-linear equations I, Diff.Eqns. 19(1983), 1558-1571.
  • 3V.A. Galaktionov, S. P. Kurdyumov and A. A. Samarskii, A parabolic system of quasi-linear equations II, DifiF.Eqns. 21 (1985), 1049-1062.
  • 4W.B. Deng, Y. X. Li and C. H. Xie, Blow-up and global existence for a nonlocal degenerated, parabolicsystem, J.Math. Anal. Appl., 277 (2003),199-217.
  • 5陈莉,陈玉娟.非局部反应扩散方程的一致爆破行为[J].南通大学学报(自然科学版),2011,10(2):90-94. 被引量:5
  • 6Y.J. Chen and M. X. Wang, Blow-up problems for partial differential equations and systems of parabolic type,in "Recent Progress in Nonlinear Partial Differential Equations and Viscosity Solutions' Eds. Y. Du, H, Ishii andW. Y. Lin, World Scientific Publishing, 2009. 245-281 ISBN: 981-283-473-7.
  • 7A. S. Kalashnikov, The nature of the propagation of perturbations in problems of non-linear heat conductionwith absorption, USSR Comp. Math. Math. Phys. 14 (1974),70-85.
  • 8Gu Y G Necessary and sufficient conditions of extinction of solution on parabolic equations [J].Acta. Math.Sinica, 1994,37: 73-79 (in Chinese).
  • 9GalaktionovV A, Vazquez J L. Asymptotic behaviour of nonlinear parabolic equations with criticalexponents [J].A dynamical system approach, J. Funct. Anal, 1991,100:435-462.
  • 10Galaktionov V A, Vazquez J L. Extinction for a quasilinear heat equation with absorption I [J]. Technique ofintersection comparison. Comm. Partial Differential Equations, 1994,19: 1075-1106.

二级参考文献7

  • 1Bebernes J, Bressan A, Lacey A. Total blow-up versus single point blow-up[J]. J Differential Equations, 1988, 73(1):30-44.
  • 2Bricher S. Blow-up behaviour for nonlinearly perturbed semilinear parabolic equations Proc[J]. Roy Soe Edinburgh Sect A, 1994, 124:947-969.
  • 3Souplet P. Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source[J]. J Differential Equations, 1999, 153:374-406.
  • 4Okada A, Fukuda I. Total versus single point blow-up of solutions of a semilinear parabolic equation with localized reaction[J]. Math Anal Appl, 2003, 281(2):485-500.
  • 5Liu Qilin, Chen Yichao, Lu shengqi. Uniform blow-up pro- files for nonlinear and nonlocal reaction-diffusion equa- tions[J]. Nonlinear Analysis, 2009, 71(5/6):1572-1583.
  • 6Soupier P. Blow up in nonlocal reaction-diffusion equations [J]. SIAM J Math Anal, 1998, 29(6) : 1301-1334.
  • 7Wang Mingxin, Wang Yuanming. Properties of postive sdu- tions for non-local reaction-diffution problems [J ]. Math Methods Appl Sci, 1996, 19(14) : 1141-1156.

共引文献4

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部