期刊文献+

燃料对甘氨酸-硝酸盐法合成Gd_(0.8)Sr_(0.2)CoO_(3-δ)阴极材料的影响 被引量:3

Effect of Fuel Amount on Synthesis of Gd_(0.8)Sr_(0.2)CoO_(3-δ) Cathode Material by Gly-cine-nitrate Process
下载PDF
导出
摘要 采用甘氨酸-硝酸盐法(GNP)制备Gd0.8Sr0.2CoO3-δ(GSC)纳米粉体。通过元素化学计量、热力学计算及XRD、SEM、交流阻抗谱等测试手段,研究了甘氨酸与金属离子摩尔比(G/M=1.5、2.0、2.5、3.0、3.5)以及煅烧温度等制备参数对GSC粉料合成反应及电极性能的影响。实验测得凝胶自燃烧时火焰温度在850-1150℃之间,其中G/M=2.5时火焰温度最高,燃烧最完全,与理想化学计量(φ=1)的计算结果相一致,由此制得的粉料呈蓬松泡沫状,粒径细小。交流阻抗谱测试结果表明:1100℃煅烧制得的GSC-2.5阴极与Sm0.2Ce0.8O1.9(SDC)电解质间的界面电阻(ASR)最小,仅0.119.cm2。Gd0.8Sr0.2CoO3-δ电极电导率在500~800℃测试范围内均大于100 S/cm,满足IT-SOFC阴极材料的要求。 Gd_(0.8)Sr_(0.2)CoO_(3-δ) (GSC) nano-powders as cathode materials were synthesized by glycine-nitrate process (GNP) with different glycine-to-metal ratios (G/M=1.5, 2.0, 2.5, 3.0, 3.5). The performance of GSC cathode calcined at different temperatures was characterized by XRD, SEM and AC impedance spectra. The actual flame temperatures of combustion measured ranging from 850℃ to 1150℃. The flame temperature for the sample of G/M 2.5 is the highest because of the most sufficient combustion which is in agreement with the calculation result of the ideal stoichiometric ratio (φ=1). Meanwhile, the fluffy foamy powder is obtained with fine grain size. Analysis of the AC impedance spectra shows that the area specific resistance (ASR) between GSC-2.5 cathode prepared at 1100℃ and Sm0.2Ce0.8O1.9 (SDC) electrolyte is mere 0.119 Ω.cm2. The electrical conductivity value of Gd0.8Sr0.2CoO3-δ cathode is higher than 100 S/cm in the temperature range from 500℃ to 800℃, which implies that GSC could be a promising cathode material for IT-SOFC.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2013年第8期818-824,共7页 Journal of Inorganic Materials
基金 江苏高校优势学科建设项目~~
关键词 阴极 甘氨酸-硝酸盐法 化学计量系数 热力学 电化学性能 cathode glycine-nitrate process (GNP) stoichiometric coefficient thermodynamics electrochemicalperformance
  • 相关文献

参考文献1

二级参考文献17

  • 1Molenda J, Swierczek K, Zaj~c W. Functional materials for the IT-SOFC. Journal of Power Sources, 2007, 173(2): 657-670.
  • 2Brett D J L, Atkinson A, Cumming D, et al. Methanol as a direct fuel in intermediate temperature (500-600~C) solid oxide fuel cells with copper based anodes. Chemical Engineering Science, 2005, 60(21): 5649-5662.
  • 3Shiono M, Kobayashi K, Nguyen T L, et al. Effect of CeO2 inter- layer on ZrO2 electrolyte/La(Sr)CoO3 cathode for low-temperature SOFCs. Solid State lonics, 2004, 170(1/2): 1-7.
  • 4I Huijsmans J P P, Berkel F P F, Christie G M. Intermediate tem1perature SOFC - a promise for the 21st century. Journal of Power Sources, 1998, 71(1/2): 107-110.
  • 5Zhu C J, Liu X M, Yi C S, et al. Electrochemical performance of PrBaCo2Os+ layered perovskite as an intermediate-temperature solid oxide fuel cell cathode. Journal of Power Sources, 2008, 185(1): 193-196.
  • 6Choi M B, Jeon S Y, Song S J, et al. Chemical diffusivity and ionic conductivity of GdBaCo2Os~a. Journal of Power Sources, 2010, 195(4): 1059-1064.
  • 7Conder K, Podlesnyak A, Pomjakushina E, et al. Transport proper- ties and oxygen isotope effect in layered cobaltites RBaCozOs~x. Journal of Magnetism and Magnetic Materials, 2007, 310(2): 907-909.
  • 8Liu Y. YBaCo2Os~~ as a new cathode material for zirconia-based solid oxide fuel cells. Journal of Alloys and Compounds, 2009, 477(1/2): 860-862.
  • 9Taskin A A, Lavrov A N, Ando Y. Fast oxygen diffusion in A-site ordered perovskites. Progress in Solid State Chemistry, 2007, 35(2/3/4): 481-490.
  • 10Lin B, Zhang S Q, Zhang L C, et al. Prontonic ceramic membrane fuel cells with layered GdBaCo2Os+x cathode prepared by gel-casting and suspension spray. Journal of Power Sources, 2008, 177(2): 330-333.

共引文献9

同被引文献33

  • 1李艳,吕吉吉,黄喜强,贾莉,苗继鹏,苏文辉.掺银的Sm_(0.5)Sr_(0.5)CoO_3中温固体氧化物燃料电池复合阴极材料的制备与性能研究[J].中国稀土学报,2004,22(5):660-664. 被引量:4
  • 2lichev I A N, Shashkin D R, Khomenko T L, et al. Structure and Surface Properties ofZrO2 ,CeO2 ,and Zr0.sCe0.502 Prepared by a Micro,e- mulsion Method According to X - Ray Diffraction, TPR, and EPR Data[ j ]. Kinet Catal, 2010, 51 (5) : 743 - 753.
  • 3隋智升,隋升,罗冬梅.燃料电池及其应用[M].北京:冶金:工业出版社,2004:92-95.
  • 4S1NGHAL SC. Advances in solid oxide fuel cell technology [J]. Solid State Ionics, 2000, 135: 305-313.
  • 5HUIJSMANS J, BERKEL F, CHRISTIE GM. Intermediate temperature SOFC - a promise for the 21st century [J]. Journal of Power Sources, 1998, 71:107-110.
  • 6BRETT DJL, ATKINSON A, BRANDON NP, et al. Intermediate temperature solid oxide fuel cells [J]. Chemical Society Reviews, 2008, 37: 1568-1578.
  • 7DUSASTRE V, KILNER JA. Optimisation of composite cathodes for intermediate temperature SOFC applications [J]. Solid State Ionics, 1999, 126: 163-174.
  • 8TERAOKA Y, ZHANG HM, OKAMOTO K, et al. Mixed ionic-electronic conductivity of Lal-xSrxCol-yFeyO3- perovskite-type oxides [J]. Materials Research Bulletin, 1988, 23 [ 1 ]: 51-58.
  • 9PARK JH, KIM JP, KWON HT, et al. Oxygen permeability, electrical property and stability of Lao.sSr0.2Co0.2Fe0.803- membrane [J]. Desalination, 2008, 233: 73-81.
  • 10SHAO ZP, HALLESM. A high-performance cathode for the next generation of solid-oxide fuel cells [J].Nature, 2004, 431: 170-173.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部