期刊文献+

GaN基LED图形衬底的性能研究 被引量:1

Research for Patterned Sapphire Substrates of GaN-based LEDs
下载PDF
导出
摘要 蓝宝石图形衬底可以降低外延位错密度并增强背散射光,已经成为制备高亮LED有效技术手段。本研究运用时域有限差分(FDTD)法模拟和比较了GaN基微纳米图形衬底LED几种衬底图形结构对光的提取效率的影响。模拟结果显示纳米图形衬底(NPSS)对光效的提高明显优于微米图形衬底(MPSS)。在对圆柱、圆孔、圆台、圆锥和曲面锥等纳米结构的研究中,圆台柱结构的纳米图形衬底对光提取效果最好。通过进一步模拟优化,得到圆台结构的最佳参数,此时相对于普通衬底LED光的提取效率提高了96.6%。试验中,采用软模压印技术在蓝宝石基片上大面积制备出纳米圆台图形衬底,并测得外延生长GaN层后的外延片的PL强度增加了8倍,可见纳米图形衬底对提高LED的出光效率有显著效果。 Pattemed Sapphire Substrate (PSS) which can reduce the density of threading dislocation and enhance the effect of scattering is widely used to fabricate high-power Light-Emitting-Diode (LED) chip. In this paper, the finite- difference time-domain (FDTD) method was used to simulate and analyze the light extraction efficiency (LEE) of GaN-based micro-scale and nano-scale patterned sapphire substrates LED. The results show that the nano-patterned sapphire substrate (NPSS) has a significantly better LEE than that of micro-patterned sapphire substrate (MPSS). And in NPSS, the LEE of the pillar structure improveed 96.6% comparing to other nano-patterned structures. Large areas of table-like nano-sapphire patterned substrates are successfully prepared through soft embossing technology. The photo- luminescence (PL) of the LED grown on table-like nano-sapphire patterned substrates is 8 times stronger than that of the LED grown on the unpatterned sapphire wafers.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2013年第8期869-874,共6页 Journal of Inorganic Materials
基金 国家自然科学基金(61076042 60607006) 国家重大科学仪器专项(2011YQ16000205) 国家863计划(2011AA03A106) 华中科技大学校基金(HUST:2011TS119)~~
关键词 GAN基LED FDTD 图形衬底 纳米压印 GaN-based LED FDTD patterned sapphire substrates nano-imprint
  • 相关文献

参考文献13

  • 1李天保,梁建,许并社.光子晶体提高GaN基LED出光效率的研究进展[J].半导体光电,2010,31(3):339-343. 被引量:4
  • 2Fujii T, Gao Y, Sharma R, et al. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl. Phys. Lett., 2004, 84: 855-857.
  • 3齐云,戴英,李安意.提高发光二极管(LED)外量子效率的途径[J].电子元件与材料,2003,22(4):43-45. 被引量:18
  • 4Sun Ching-Cherng, Lin Chao-Ying. Optical Modeling and Light Extraction of an LED with Surface Roughening and Sharpening. Third International Conference on Solid State Lighting, 2004, 5187: 100-106.
  • 5Wang Dong-Xue, Ferguson Ian T, Buck John A. GaN-based distributed Bragg reflector for high-brightness LED and solid-state lighting. Applied Optics, 2007, 46(21): 4763-4767.
  • 6Kwon Min-Ki, Kim Ja-Yeon, Park Il-Kyu, et al. Enhanced emission efficiency of GaN / InGaN multiple quantum well light- emitting diode with an embedded photonic crystal. Applied Physics Letters, 2008, 92(25): 251110-251113.
  • 7Lee Jae-Hoon, Lee Dong-Yul, Oh Bang-Won, et al. Comparison of InGaN-based LEDs grown on conventional sapphire and cone-shape-patterned sapphire substrate. IEEE Transactions On Electron Devices, 2010, 57(1): 157-163.
  • 8Noda Susumu, Tomoda Katsuhiro, Yamamoto Noritsugu, et al. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science, 2000, 289(2549): 604-606.
  • 9Chen Jian, Wang Qing-Kang, Li Hai-hua, et al. Far-field superlens for nanolithography. Chin. Phys. B, 2010, 19(3): 34202-34208.
  • 10Efremov A A, Tarkhin D V, Bochkareva N I, et al. Determination of the coefficient of light attenuation in thin layers of light-emitting diodes. Semiconductors, 2006, 40(3): 375-378.

二级参考文献45

  • 1[1]Kato T, Susawa H, Hirotani M, et al. GaAs/GaAlAs surface emitting IR led with bragg reflector grown by MOCVD [J]. J Cryst Growth, 1991, 107: 832.
  • 2[2]Ishikawa M, Shiozawa H, Itaya K, et al. Temperature dependence of the threshold current for InGaAlP visible laser diodes [J]. IEEE J Quantum Electron, 1991, 27: 23-29.
  • 3[3]Yablonovitch E, Huang D M, Gmitter T J, et al. Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates [J]. Appl Phys Lett, 1990, 56: 2419.
  • 4[4]Schnitzer I, Yablonovitch E, Caneau C, et al. Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally from AlGaAs/GaAs/AlGaAs double heterostructures [J]. Appl Phys Lett, 1993, 62: 131.
  • 5[5]Adachi S, Oe K. Chemical etching characteristics of (001)GaAs [J]. J Elcetrochem Soc, 1983, 130: 2427.
  • 6[6]Liau Z L, Mull D E. Wafer fusion: A novel technique for optoelectronic device fabrication and monolithic integration [J]. Appl Phys Lett, 1990, 56: 737.
  • 7[7]Kish F A, Steranka F M, Defevere D C, et al. Vary high-efficiency semiconductor wafer-bonded transpatent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes [J]. Appl Phys Lett, 1994, 64: 2839.
  • 8[8]Hofler G E, Vanderwater D A, Defevere D C, et al. Wafer bonding of 50-mm diameter GaP to AlGaInP light-emitting diode wafers [J]. Appl Phys Lett, 1996, 69(6): 803.
  • 9[9]Benisty H, Deneve H, Weisbnch C. Impact of planar microcavity effects on light extraction-Part I: bacic concepts and analytical trends [J]. IEEE J Quantum Elcetron, 1998, 34(9): 1312.
  • 10[10]Krames M R, Ochiai-Holcomb M, Hofler G E, et al. High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting>50% external quantum efficiency [J]. Appl Phys Lett, 1999, 75: 2365.

共引文献18

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部