期刊文献+

浮区法生长Lu_2Si_2O_7:Ce晶体的缺陷、光学和闪烁性能研究 被引量:3

Defect Optical and Scintillation Properties of Lu_2Si_2O_7:Ce Single Crystal Grown by Floating Zone Method
下载PDF
导出
摘要 通过浮区法制备得到LPS:0.5%Ce单晶样品,并对其包裹体、开裂、闪烁和光学性能进行了研究,获得了晶体的电子探针谱、透过谱、77~500 K下的紫外激发发射谱、X射线激发发射谱和77~500 K下的衰减时间谱。研究发现晶体中存在解理开裂和热应力开裂,同时存在两种类型的包裹体,分别包含[Si3O9]6-、23[SiO]n阴离子团和过量的SiO2。由于采用空气为生长气氛,样品中部分Ce3+被氧化为Ce4+。浮区法LPS:0.5%Ce表现出较高的发光效率,约为32000 ph/MeV。随着温度的升高,样品的紫外激发发射谱逐渐向长波方向移动,发射谱谱线随着温度的升高展宽,导致自吸收的增加。衰减时间的温度转变点位于450 K,表明LPS:Ce闪烁晶体适用于高温环境,是一种性能优异的闪烁晶体。 Floating zone (Fz) method was employed to grow the Lu2Si2O7 (LPS):0.5%Ce single crystal. The crack, de- fect, optical and scintillation properties of LPS:Ce were studied. The electron probe microanalysis (EPMA), transmittance spectrum, X-ray excited luminescence (XEL) spectra, photoluminescence spectra and decay curves (from 77 K to 500 K) were recorded. The cleavage and thermal stress cracks are detected in the as-grown crystal. Two kinds of inclusions are found through the EPMA: one is [Si3O9]6- and [SiO3 ]n 2- anion radicals and the other is the excess SiO2. Part of Ce3+ in the LPS:Ce sample was oxidized into Ce4+ in the air growth atmosphere. Fz grown LPS:0.5%Ce sample presents high luminescence efficiency, which is 32000 ph/MeV. As the temperature increases, the photoluminescence curves move towards the longer wavelength direction and broaden, leading to the increasing self-absorption. The rollover point of the decay time locates at 450 K, indicating that the LPS:Ce scintillator is a kind of high performance scintillator which can be applied in the high temperature environment.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2013年第8期891-895,共5页 Journal of Inorganic Materials
基金 国家自然科学基金(51171239) 973项目(2011CB612310) 上海市重点基金(11JC1412400)~~
关键词 Lu2Si2O7 CE 浮区法 单晶 缺陷 闪烁性能 Lu2Si2O7:Ce floating zone method single crystal defects scintillation properties
  • 相关文献

参考文献2

二级参考文献18

  • 1秦来顺,任国浩,李焕英,陆晟,裴钰.Lu_2SiO_5∶Ce晶体生长中存在的主要问题[J].硅酸盐学报,2004,32(11):1361-1366. 被引量:13
  • 2李焕英,秦来顺,陆晟,任国浩.Lu_2Si_2O_7:Ce闪烁晶体的生长与宏观缺陷研究[J].无机材料学报,2006,21(3):527-532. 被引量:5
  • 3Van Eijk C W E.Nucl.Instr.Meth.Phys.Res.A,2001,460(1):1-14.
  • 4Melcher C L,Schweitzer J S.Nucl.Instr.Meth.Phys.Res.A,1992,314(1):212-214.
  • 5Qin L,Li H,Lu S,et al.J.Cryst.Growth,2005,281(2/3/4):518-524.
  • 6Takagi K,Fukazawa T.Appl.Phys.Lett.,1983,42(1):43-45.
  • 7Aitasalo T,Holso J,Lastusaari M,et al.Opt.Mater.,2004,26(2):107-112.
  • 8Pauwels D,Le Masson N,Viana B,et al.IEEE T.Nucl.Sci.,2000,47(6):1787-2102.
  • 9Pidol L,Kahn-Harari A,Viana B,et al.J.Phys.:Condens.Matter.,2003,15(12):2091-2102.
  • 10Feng H,Ding D Z,Li H Y,et al.J.Appl.Phys.,2008,103(8):083109-1-7.

共引文献5

同被引文献36

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部