期刊文献+

嗜碱单胞菌的新型羧基转移酶α亚基基因Aa-accA及其抗盐碱性能 被引量:2

A novel gene (Aa-accA) encoding acetyl-CoA carboxyltransferase α-subunit of Alkalimonas amylolytica N10 enhances salt and alkali tolerance of Escherichia coli and tobacco BY-2 cells
原文传递
导出
摘要 【目的】探讨解淀粉嗜碱单胞菌(Alkalimonas amylolytica)N10来源的羧基转移酶α亚基(Acetyl-coenzyme A carboxylase subunit alpha,AccA)基因Aa-accA对细菌及植物细胞耐盐碱性的作用。【方法】通过PCR方法从嗜碱菌N10基因组中扩增基因Aa-accA,并在大肠杆菌(Escherichia coli)K12中表达,通过测定工程菌及对照菌在不同盐浓度[0%,2%,4%,6%(W/V)NaCl]及不同碱性pH(8.0,8.5,9.0,9.5)的LB中生长12 h后的OD600值,以及二者在分别含6%(W/V)NaCl及pH 9的LB中的生长曲线,评价Aa-accA对大肠杆菌耐盐碱性的影响。同时以pPZP111为载体,构建了植物细胞重组表达载体,通过农杆菌介导方法将该基因转入烟草BY-2悬浮细胞表达,利用FDA染色方法测定经盐碱溶液处理后残存的活细胞数量评价该基因对植物细胞耐盐碱性的影响。【结果】PCR扩增得到基因Aa-accA,其ORF含957 bp,编码318个氨基酸的多肽,BLAST比对显示该基因为羧基转移酶α亚基(AccA)家族中的成员,其氨基酸序列与E.coli的AccA具有76%同源性;含有Aa-accA的E.coli K12相较于对照组在不同NaCl浓度及不同碱性pH的LB中表现出了明显的生长优势,特别是在6%(W/V)NaCl及pH 9的LB中培养12 h后,终OD600分别是对照菌的2.6倍和3.5倍;缺失体实验结果显示基因缺失的突变体E.coli K12ΔaccA在6%(W/V)NaCl及pH 9的LB中不能正常生长,而含有Aa-accA基因的重组质粒使得E.coli K12ΔaccA在同样条件下OD600值达到0.5和0.2;转入此基因的烟草BY-2细胞,经盐碱溶液处理后,其存活细胞比例高于野生型。【结论】本研究首次发现了Aa-accA基因与盐碱性的相关性,可提高大肠杆菌及烟草BY-2细胞的耐盐碱能力。 [ Objective l Acetyl-CoA carboxylase (ACC) catalyzes the first step of fatty acid synthesis. In most bacteria, ACC is composed of four subunits encoded by accA, accB, accC, and accD. Of them, accA encodes acetyl-CoA carboxyhransferase oL-suhunit. Our prior work on proteomics of Alkalimonas amylolytica N10 showed that the expression of the Aa-accA has a remarkable response to salt and alkali stress. This research aimed to find out the Aa-accA gene contributing to salt and alkali tolerance. [ Methods] The Aa-accA was amplified by PCR from A. amylolytica N10 and expressed in E. coli K12 host. The effects of Aa-accA expression on the growth of transgenic strains were examined under different NaC1 concentration and pH conditions. Transgenic tobacco BY-2 cells harboring Aa-accA were also generated via Agrobacterium-mediated transformation. The viability of BY-2 cells was determined with FDA staining method after salt and alkali shock. [ Results] The Aa-accA gene product has 318 amino acids and is homologous to the carboxyl transferase domain of acyl-CoA carboxylases. It showed 76% identity with AccA (acetyl-CoA carboxylase carboxyltransferase subunit alpha) from E. coll. Compared to the wild-type strains, transgenic E. coli K12 strain containing Aa-accA showed remarkable growth superiority when grown in increased NaC1 concentrations and pH levels. The final cell density of the transgenic strains was 2.6 and 3.5 times higher than that of the control type when they were cultivated in LB medium containing 6% (W/V) NaC1 and at pH 9, respectively. Complementary expression of Aa-accA in an accA-depletion E. coli can recover the tolerance of K12AaccA to salt and alkali stresses to some extent. Similar to the transgenic E. coli, transgenic tobacco BY-2 cells showed higher percentages of viability compared to the wild BY-2 cells under the salt or alkali stress condition. [ Conclusion] We found that Aa-accA from A. amylolytica N10 overexpression enhances the tolerance of both transgenic E. coli and tobacco BY-2 cells to NaC1 and alkali stresses.
出处 《微生物学报》 CAS CSCD 北大核心 2013年第8期809-816,共8页 Acta Microbiologica Sinica
基金 国家"973项目"--国家重点基础研究发展计划(2013CB733900) 农业部民口科技重大专项(2009ZX08009-096B)~~
关键词 嗜碱菌 Aa-accA基因 大肠杆菌(Escherichia coli)K12 烟草BY-2细胞 耐盐碱 alkaliphiles, Alkalimonas amylolytica NIO, Aa-accA gene, salt/alkali stress
  • 相关文献

参考文献2

二级参考文献69

  • 1Harwood HJ Jr. Acetyl-CoA carboxylase inhibition for the treatment of metabolic syndrome. Curr Opin Investig Drugs, 2004, 5 (3): 283-289.
  • 2Herbert D, Walker KA, Price L. Acetyl-CoA carboxylase - a graminicide target sit. Pestic Sci, 1997, 50 (1): 67-71.
  • 3Cronan JE Jr, Waldrop GL. Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res, 2002, 41 (5): 407-435.
  • 4Choi-Rhee E, Cronan JE Jr. The biotin carboxylase-biotin carboxyl carrier protein complex of Escherichia coli acetyl-CoA carboxylase. J Biol Chem, 2003, 278 (33): 30806-30812.
  • 5Nikolau BJ, Ohlrogge JB, Wurtele ES. Plant biotin-containing carboxylases. Arch Biochem Biophys, 2003, 414 (2): 211-222.
  • 6Abu-Elheiga L, Brinkley WR, Zhong L, Chirala SS, Woldegiorgis G, Wakil SJ. The subcellular localization of acetyl-CoA carboxylase 2. Proc Natl Acad. Sci USA, 2000, 97 (4): 1444-1449.
  • 7Elborough KM, Winz R, Deka RK, Markham JE, White AJ, Rawsthorne S, Slabas AR. Biotin carboxyl carrier protein and carboxyltransferase subunits of the multi-subunit form of acetyl-CoA carboxylase from Brassica napus: Cloning and analysi s of expression during oilseed rape embryogenesis. Biochem J, 1996, 3l5 (Pt 1): l03-112.
  • 8Schulte W, Topfer R, Stracke R, Schell J, Martini N. Multifunctional acetyl-CoA carboxylase from Brassica napus is encoded by a multi-gene family: Indication for plastidic 1ocalization of at least one isoform. Proc Natl Acad Sci USA, 1997, 94 (7): 3465-3470.
  • 9Burle G, David A, Donald L, John W, Margaret A, Sheila M. Transgenic plants expressing maize acetyl-CoA carboxylase gene and method of altering oil content. US, Patent, US 6222099. April 24, 2001.
  • 10Diacovich L, Peiru S, Kurth D, Rodriguez E, Podesta F, Khosla C, Gramajo H. Kinetic and structural analysis of a new group of acyl-CoA carboxylases found in Streptomyces coelicolor A3(2). J Biol Chem, 2002, 277 (34): 31228-31236.

共引文献42

同被引文献25

  • 1邱天,杨基先,崔迪,蔡蕊,张斯,李昂,马放.适冷微生物研究进展及应用现状[J].环境科学与技术,2012,35(S1):124-127. 被引量:14
  • 2RYU S I,KIM J E,HUONG N T,et al.Molecular cloning and characterization of trehalose synthase from Thermotoga maritima DSM3109:Syntheses of trehalose disaccharide analogues and NDP-glucoses[J].Enzyme and Microbial Technology,2010,47(6):249-256.
  • 3TOPAKAS E,MOUKOULI M,DIMAROGONA M,et al.Functional expression of a thermophilic glucuronoyl esterase from Sporotrichum thermophile identification of the nucleophilic serine[J].Applied Microbiology and Biotechnology,2010,87(5):1765-1772.
  • 4GLADYS C C,TERESA R C,JESUS R A,et al.Coreflood assay using extremophile microorganisms for recovery of heavy oil in Mexican oil fields[J].Bioscience and Bioengineering,2012,114(4):440-445.
  • 5SANCHEZ F J,MARTI E M.The resistance of the lichen circinaria gyrosa(nom.provis.)towards simulated Mars condition—a model test for the survivalcapacityofeukaryotic extremophile[J].Planetary and Space Science,2012(72):102-110.
  • 6ALLEN M A,LAURO F M,WILLIAMS T J,et al.The genome sequence of the psychrophilic archaeon,Methanococcoides burtonii:the role of genome evolution in cold adaptation[J].ISME Journal,2009,3(9):1012-1035.
  • 7STEINBERG L M,REGAN J M.mcrA-Targeted real-time quantitative PCR method to examine methanogen communities[J].APPL Environ Microbiology,2009,75(13):4435-4442.
  • 8REGINA S R,ANASTSSIAL L,KATHY B,et al.Fungi from geothermal soils in Yellowstone national park[J].Applied Environment Microbiology,2009,65(12):5193-5197.
  • 9GUAZZARONI M E,MORGANTE V,MIRETE S,et al.Novel acid resistance genes from the metagenome of the Tinto River,an extremely acidic environment[J].Environ Microbiology,2013,15(4):1088-1102.
  • 10WU I,ARNOLD F H.Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures[J].Biotechnology Bioeng,2013,110(7):1874-1883.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部