期刊文献+

自组装铝/氧化铜和铝/氧化铁及其性能评估 被引量:3

Preparation and Performance of Self-assembled Al/Fe_2O_3 and Al/CuO
下载PDF
导出
摘要 本文分别采用模板法制备氧化铜纳米花,水热法制备氧化铁纳米环,并自组装制备了铝/氧化铜和铝/氧化铁2种铝热剂。自组装增大了异相材料之间的接触,分别使得铝/氧化铜的反应放热量和压力由523 J.g-1、1 858 kPa增加至1 069 J.g-1、4 389kPa;铝/氧化铁的反应放热量和压力由1 448 J.g-1、749 kPa增加至2 039 J.g-1、2 280 kPa。两种铝热剂的放热量和压力差别较大,且铝/氧化铜的静电感度高于大多数含能材料,铝/氧化铁的撞击感度特别低,显示出不同的应用特点。 Copper oxide nanoflower and iron oxide nanoring were prepared by membrane templating and hydrothermal, respectively. Copper oxide nanoflower and aluminum composite were self-assembled, so did iron oxide nanoring and aluminum. The connection between different materials were enhanced by self-assembly. The heat release and pressure of copper oxide nanoflower and aluminum were increased from 523 J.g-1, 1 858 kPa to 1 069 J. g-l, 4 389 kPa. Iron oxide nanoring and aluminum were increased from 1 448 J. g-1, 749 kPa to 2 039 J. g-1, 2 280 kPa. There are great difference between the two thermit, and the static-electric sensitivity of copper oxide nanoflower and aluminum is higher than that of most energetic materials, while the impact sensitivity of iron oxide nanoring and aluminum is lower. Thus different thermit can be used in different fields based on their performance.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2013年第9期1799-1804,共6页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.61106078) 南京理工大学自主科研重大研究计划(No.2011ZDJH28)资助项目
关键词 铝热剂 放热量 p-t曲线 感度 thennit heat release p-t curve sensitivity
  • 相关文献

参考文献31

  • 1Valliappan S,Swiatkiewicz J,Puszynski J A.Powder Technol.,2005,156(2):164-169.
  • 2WANG Xin(王昕).Huozhaoyao Xuebao,2006,29(2):29-32.
  • 3Rossi C,Zhang K L,Esteve D,et al.J.Mic roe lec tromech.Syst,2007,16(4):919-931.
  • 4AN Ting(安亭),ZHAO Feng-Qi(赵凤起),GAO Hong-Xu(髙红旭),et al.Cailiao Gongcheng,2011,11:23-28.
  • 5AN Ting(安亭),ZHAO Feng-Qi(赵凤起),HAO Hai-Xia(郝海霞),et al.Huozhayao Xuebao,2011,34(1):67-72.
  • 6AN Ting(安亭),ZHAO Feng-Qi(赵凤起),PEI Qing(裴庆),et al.Wuji Huaxue Xuebao,2011,27(2):231-238.
  • 7Aumann C E,Skofronick G L,Martin J A.J.Vac.Sci,TechnoLB,Microelectron.Process.Phenom,1995,13(2):1178-1183.
  • 8Bockmon B S,Pantoya M L,Son S F,et al.J.Appl.Phys,2005,98(6):064903/1-064903/7.
  • 9Granier J J,Pantoya M L. Combust.Flame,2004,138(4):373-383.
  • 10PantoyaM L,Granier J J.Propellants Explos.Pyrotech.,2005,30(1):53-62.

共引文献1

同被引文献31

  • 1蒲利春,崔旭梅.自组装技术及其影响因素分析[J].化工新型材料,2004,32(10):18-20. 被引量:7
  • 2王志新,李国新,劳允亮,李浩,王琳琳,王丽娜,王鹤.硅系延期药贮存与硅粉表面稳定性研究[J].含能材料,2005,13(3):158-161. 被引量:19
  • 3王昕.纳米含能材料研究进展[J].火炸药学报,2006,29(2):29-32. 被引量:26
  • 4Gash A E, Satcher J H, Simpson R L, et al. Nanostructured energetic materials with sol-gel methods [C]∥Materials Research Society Fall 2003 Meeting. Boston, MA, US: Lawrence Livermore National Laboratory,2003.
  • 5Tillotson T M, Gash A E, Simpson R L, et al. Nanostructured energetic materials using sol-gel methodologies [J]. Journal of Non-Crystalline Solids, 2001, 285(1/2/3): 338-345.
  • 6Shende R, Subramanian S, Hasan S, et al. Nanoenergetic composites of CuO nanorods, nanowires, and Al-nanoparticles [J]. Propellants, Explosives, Pyrotechnics, 2008, 33(2): 122-130.
  • 7Umbrajkar S M, Schoenitz M, Dreizin E L. Control of structural refinement and composition in Al-MoO3 nanocomposites prepared by arrested reactive milling [J]. Propellants, Explosives, Pyrotechnics, 2006, 31(5): 382-389.
  • 8Sanders V E, Asay B W, Foley T J, et al. Reaction propagation of four nanoscale energetic composites (Al/MoO3, Al/WO3, Al/CuO, and Bi2O3) [J]. Journal of Propulsion and Power, 2007, 23(4): 707-714.
  • 9Walter K C, Pesiri D R, Wilson D E. Manufacturing and performance of nanometric Al/MoO3 energetic materials [J]. Journal of Propulsion and Power, 2007, 23(4): 645-650.
  • 10Martirosyan K S. Nanoenergetic gas-generators: principles and applications [J]. Journal of Materials Chemistry, 2011, 21(26): 9400-9405.

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部