期刊文献+

基于主元分析的瓦斯抽放系统故障检测方法 被引量:1

Fault Detection for Gas Drainage System Based on PCA
下载PDF
导出
摘要 瓦斯抽放系统是煤矿安全生产的重要环节。为提高系统故障检测能力,迅速处理故障,本文提出一种基于主元分析的多元统计分析方法,利用SPE统计量、T2统计量以及得分向量判断瓦斯抽放监控系统运行过程,是否发生异常。通过实验获取煤矿瓦斯抽放系统测量参数并进行分析,验证了基于主元分析的过程检测方法在瓦斯抽放系统故障检测中效果良好。 The gas drainage system is an important part of coal mine production safety. In order to improve the system fault detection ability and deal with failure quickly, this paper presents a multivariate statistical analysis method based on principal component analysis. Through the measurement parameter correlation analysis, the paper eliminated the variable association and established the statistical model of state detec- tion. Then it adopted SPE statistic, T2 statistic and score vector to determine whether an exception occurs in the gas drainage monitoring sys- tem. The experimental analysis demonstrated that the method can be used for fault detection in a gas drainage system.
作者 路萍
出处 《煤矿现代化》 2013年第4期40-42,46,共4页 Coal Mine Modernization
关键词 主元分析 瓦斯抽放系统 故障检测 orineioal comnonent analysis: the zas drainage system: fault detection
  • 相关文献

参考文献5

二级参考文献10

  • 1[1]Dunia R, Qin S J. Joint diagnosis of process and sensor faults using principle component analysis[J]. Control Engineering Practice, 1998, 6:457-469.
  • 2[2]Qin S J, Li W H. Detection and identification of faulty sensors with maximum sensitivity[C]. In:Proceedings of American Control Conference, California, 1999,613-617.
  • 3[4]Chiang L.H., Russell E.L., and Braatz R.D. Fault detection and diagnosis in industrial systems[M]. London: Springer, 2000.
  • 4[5]Jackson J.E. A User's guide to principle components[M]. Wiley, New York, 1991.
  • 5WANG Gang, ZHAO Li-Jie, XIN Xiao-ning(王纲,赵立杰,辛小宁).Batch process performance monitoring and fault detection based on multiway principal component analysis method[J]. Journal of Shenyang Institute of Chemical Technology(沈阳化工学院学报), 1999,13(3):190-196.(in Chinese)
  • 6WANG Hai-qing(王海青). Industry Process monitoring: An Approach Based on Wavelets and Statistics(工业过程监测:基于小波和统计学的方法)[D]. Hangzhou: Department of Control Science and Engineering, Zhejiang University, 2000.(in Chinese)
  • 7LIN Wei-lu, QIAN Yu, LI Xiu-xi. Nonlinear dynamic principal component analysis for on-line process monitoring and diagnosis[J]. Computers and Chemical Engineering, 2000, 24:423-429.
  • 8PATRICIA Ralston, GAIL DePuy, JAMES H Graham. Computer-based monitoring and fault diagnosis: a chemical process case study[J]. ISA Transactions, 2001,40: 85-98.
  • 9LEO H Chiang, EVAN L Russell, RICHARD D Braatz. Fault diagnosis in chemical processes using fisher discriminant analysis, discriminant partial least squares, and principal component analysis[J]. Chemometrics and Intelligent Laboratory System, 2000,50: 243-252.
  • 10陆宁云,杨英华,王福利.基于迭代主成分分析的过程监测方法的研究与实现[J].控制与决策,2002,17(2):215-218. 被引量:9

共引文献97

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部