期刊文献+

新形貌二氧化硅材料的制备及光学性质研究

Synthesis and Photoluminescence of Two New Morphology Silica Materials
下载PDF
导出
摘要 采用物理热蒸发二氧化硅纳米颗粒和三氯化铁催化剂混合粉末的方法,制备了两种新形貌二氧化硅材料,并用扫描电子显微镜、X射线电子能谱和光致发光等手段分别研究了合成材料的结构、组分和光学特质。研究发现,合成的材料的形貌分别为"蘑菇状"和"花朵状",材料垂直于衬底生长,且发射中心波长为510nm稳定的蓝绿光。根据得到的实验结果,分析认为材料的生长机制符合催化剂决定的顶部生长模式,催化剂的不同形貌决定形成了两种不同形貌材料,并通过研究材料生长初期的照片,证明了上述推测的正确性。本研究为合成其它新形貌纳米材料提供了一种新方法。 Two new morphology silica materials were successfully synthesized by simple physical thermal evaporation using the mixture of silica nanoparticles and iron trichloride.The scanning electron microscopy,energy-dispersive X-ray spectroscopy,and photoluminescence spectroscopy were used to characterize the structure,components,and optical characteristic of the materials.The results show that the synthesized materials have two kinds of morphology,which can be named as"mushrooms"and"flower shape",respectively.The materials have a growth direction perpendicular to the Si substrate and can emit stable broad blue-green photoluminescence band with defined maximum wavelength about 510nm.According to the experimental results,we think that the growth mechanism of the materials follows the top growth mode and the catalyst morphology is the key factor for synthesizing different morphology of silica materials.The synthetic approach presented here opens a new route to fabricate other different shapes of nano-structures.
出处 《青岛科技大学学报(自然科学版)》 CAS 北大核心 2013年第4期331-335,共5页 Journal of Qingdao University of Science and Technology:Natural Science Edition
基金 国家自然科学基金资助项目(10804068 11174224)
关键词 物理热蒸发 二氧化硅 顶部生长模式 光致发光性质 physical thermal evaporation silica top growth model photoluminescence
  • 相关文献

参考文献15

  • 1Yu D P, Hang Q L, Ding Y, et al. Amorphous silica nanowires: Intensive blue light emitters [J] Applied Phys- ics Letters, 1998, 73 : 3076-3078.
  • 2Hao Y F, Meng G W, Ye C H, et al. Reversible blue light emission from self-assembled silica nanocords [J]. Applied Physics Letters, 2005, 87:33106(1-3).
  • 3Zhu Y Q, Hu W B, Hsu W K, et al. A simple route to sili- con-based nanostructures [J]. Advanced Materials, 1999, 11(10) :844-847.
  • 4Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science, 1996, 271: 933-937.
  • 5Tong L M, Gattass R R, Ashcom J B, et al. Subwavelength- diameter silica wires for low-loss optical wave guiding [J]. Nature, 2003, 426:816-819.
  • 6Wang J C, Zhan C Z, Li F G. The synthesis of silica nanowi- re arrays [J]. Solid State Communications, 2003, 125: 629-631.
  • 7Zhang Z G, Ramanath G. Creation of radial patterns of car bonated silica fibers on planar silica substrates [J] Ad- vanced Materials, 2001, 13: 197-200.
  • 8Wang Z L, Gao R P, Gole J L, et al. Silica nanotubes and nanofiber arrays[J]. Advanced Materials, 2000, 12~ 1938- 1940.
  • 9Jiang Z, Xie T, Yuan X Y, et al. Catalytic synthesis and photoluminescence of silicon oxide nanowires and nanotubes [J]. Applied Physics A, 2005, 81, 477 479.
  • 10Cao L Z, Song H, Jiang H, et al. Synthesis and photolumi- nescence of silica nanowires grown on Si substrate[J]. J In- org Organomet Polym, 2011, 21:823-826.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部