摘要
Network Coding (NC) brings correlation between the coded signals from different sources, which makes the system more vulnerable to the decode error at relay. Conventional Cyclic Redundancy Code (CRC) has been implemented for error bit detection. However, its error correction is simply ignored. To fully exploit this feature, this paper proposes a novel joint Log-Likelihood Ratio (LLR) CRC error mitigation for NC two way relay channel. Specific thresholds are designed to estimate the error number of data block and identify those which can be recovered if the number is within the error correction scope of CRC. We examine two modes of the thresholds, one based on the average Bit Error Rate (BER) of source-relay link, while the other based on that of instantaneous one. We provide the full analysis for the Pair-wise Error Probability (PEP) performance of the scheme. A variety of numerical results are presented to reveal the superiority of the proposed scheme to conventional CRC NC under independent Rayleigh fading channels. Moreover, the efficiencies of the proposed thresholds are also validated.
Network Coding (NC) brings correlation between the coded signals from different sources which makes the system more vulnerable to the decode error at relay. Conventional Cyclic Redundancy Code (CRC) has been implemented for error bit detection. However, its error correction is simply ignored. To fully exploit this feature, this paper proposes a novel joint Log-Likelihood Ratio (LLR) CRC error mitigation for NC two way relay channel. Specific thresholds are designed to estimate the error number of data block and identify those which can be recovered if the number is within the error correction scope of CRC. We examine two modes of the thresholds, one based on the average Bit Error Rate (BER) of source-relay link, while the other based on that of instantaneous one. We provide the full analysis for the Pair-wise Error Probability (PEP) performance of the scheme. A variety of numerical results are presented to reveal the superiority of the proposed scheme to conventional CRC NC under independent Rayleigh fading channels. Moreover, the efficiencies of the proposed thresholds are also validated.
基金
Supported by the National 973 Programs (2013CB329104)
the National Natural Science Foundations of China (No. 61071090, No. 61171093)
the Postgraduate Innovation Programs of Scientific Research of Jiangsu Province (CXZZ11_0388)
Jiangsu Province Natural Science Foundation Key Projects (11KJA510001)
National Science and Technology Key Projects (2011ZX03005-004-003)
Jiangsu 973 Projects (BK2011027)