期刊文献+

强潮狭长海湾中垂直涡黏性系数与底拖曳系数的估计 被引量:4

Estimation of Vertical Eddy Viscosity and Bottom Drag Coefficients in Tidally Energetic Narrow Bay
下载PDF
导出
摘要 垂直动量交换与底拖曳应力的准确刻画是目前区域海洋环流模拟中的主要困难,而基于现场观测的垂直涡黏性系数与底拖曳系数的估计是解决这一问题的最有效途径。本文通过3个海床基观测平台在1个强潮狭长海湾中的成功应用,获得了观测站位处水位、平均流速和高频湍流脉动的2周日连续观测资料,并由此计算分析了垂直涡黏性系数和底拖曳系数。结果表明:垂直涡黏性系数(AZ)具有显著的潮内变化,在M2分潮流占优的观测海区,AZ大致呈M4分潮变化,但同时存在明显的涨-落潮不对称性,涨急时较大,落急时较小。在垂向上,AZ大致呈抛物线分布,其最大值出现在底上4m左右,约为5.4×10-3 m2.s-1。基于方差方法和动量平衡法所估计的底拖曳系数的平均值分别为0.17×10-3和0.81×10-3,表明在岸线和底形复杂的狭长海湾内,形状阻力对底摩擦的贡献可显著大于界面阻力,数值模式中必须充分考虑形状阻力的作用。 The accurate quantification of vertical momentum exchange and bottom drag poses the major difficulty in regional ocean modeling, to which in-situ observations may provide the most effective refer- ence. In this paper, the vertical eddy viscosity and bottom drag coefficient were estimated with two-day- long measurements of tidal elevation, currents and turbulence data, which were conducted by using three bottom-mounted quardrapods located along the major axis of a tidally energetic narrow bay, the Xiangshan Bay, East China Sea. The flow in the bay was predominantly driven by the M2 constituent. It was found that the vertical eddy viscosity coefficient (Az) experienced evident tidal variations, approximately at a fre- quency of M4. There was also pronounced flood-ebb asymmetry in Az, being larger in flood and smaller in ebb. The vertical profile of Az roughly followed a parabolic form, with a maximum value of about 5.4 ×10^-3 m2 · s-1 at a height of 4 meters above the bottom. The mean bottom drag coefficient estimated with the variance method and the dynamical balance method were 0. 17×10^-3 and 0.81 ×10^-3 , respectively. This indicated that the form drag due to irregular topography was much larger than the skin friction. The suggest was given that the effects of form drag should be fully taken into consideration in hydrodynamic simulations.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第8期1-7,共7页 Periodical of Ocean University of China
基金 国家科技支撑计划项目(2011BAC03B02) 国家自然科学基金项目(41106006)资助
关键词 强潮狭长海湾 垂直涡黏性系数 底拖曳系数 方差法 动量平衡法 tidally energetic narrow bay vertical eddy viscosity bottom drag coefficient variance method dynamical balance method
  • 相关文献

参考文献30

  • 1Davies A M, Gerritsen H. An intereomparison of three-dimension- al tidal hydrodynamic models of the Irish Sea [J]. Tellus A, 1994, 46(2) : 200-221.
  • 2Davies A M, Xing J. An intercomparison and validation of a range of turbulence energy schemes used in three dimensional tidal mod- els [C]. //Coastal and Estuarine Studies: Qualitative skill assess- ment for coastal ocean models. Washington, D. C. : American Ge- ophysical Union, 1997: 71-95.
  • 3Guo X Y, Yanagi T. Three-dimensional structure of tidal current in the East China Sea and the Yellow Sea [J]. J Oceanogr, 1998, 54(6) : 651-668.
  • 4Kang J W, Jun K S. Flood and ebb dominance in estuaries in Korea [J]. Estuar Coast Shelf Sci, 2003, 56(1) : 187-196.
  • 5Stacey M T, Monismith S G, Burau J R. Measurements of Reyn- olds stress profiles in unstratified tidal flow[J]. J Phys Oeeanogr, 1999, 29(8):1950-1970.
  • 6Lu Y Y, Lueck R G. Using a broadband ADCP in a tidal channel. Part I: Mean flow and shear [J]. J Atmos Ocean Tech, 1999, 16 (11): 1556-1567.
  • 7Rippeth T P, Williams E, Simpson J H. Reynolds stress and tur- bulent energy production in a tidal channel [J]. J Phys Oceanogr, 2002, 32(4): 1242-1251.
  • 8Rippeth T P, Simpson J H, Williams E, et al. Measurement of the rates of production and dissipation of turbulent kinetic energy in an energetic tidal flow: Red Wharf Bay revisited[J]. J Phys Ocean- ogr, 2003, 33(9): 1889-1901.
  • 9Souza A J, Alvarez L G, Dickey T D. Tidally induced turbulence and suspended sediment [J]. Geophys Res Lett, 2004, 31(20): L20309.
  • 10Howarth M J, Souza A J. Reynolds stress observations in conti- nental shelf seas [J]. Deep Sea Res, Part Ⅱ , 2005, 25(9-10): 1075-1086.

二级参考文献87

  • 1李培良,李磊,左军成,陈美香,赵玮.渤黄东海潮能通量与潮能耗散[J].中国海洋大学学报(自然科学版),2005,35(5):713-718. 被引量:12
  • 2刘志宇,魏皓.黄海潮流底边界层内湍动能耗散率与底应力的估计[J].自然科学进展,2007,17(3):362-369. 被引量:18
  • 3蔡伟章 陈耕心.象山港潮汐潮流特征及成因探讨[J].海洋通报,1985,4(3):8-11.
  • 4谢钦春.象山港..中国海湾志,第五分册[M].北京:海洋出版社,1992.166-184.
  • 5方国洪.黄海潮能的消耗[J].海洋与湖沼,1979,10(3):200-213.
  • 6成安生.潮汐调和分析的算法[J].科学通报,1975,11:524-528.
  • 7方国洪.潮汐摩擦的非线性效应(Ⅱ)[J].海洋与湖沼,1981,12(3):195-207.
  • 8周朦 方国洪.|U|U in Fourier展开和渤海海底拖曳系数CD[J].海洋与湖沼,1987,18(1):1-10.
  • 9周朦 方国洪.|U|U的Fourier展开和渤海海底拖曳系CD[J].海洋与湖沼,1987,18(1):1-10.
  • 10周朦 方国洪.|U|U的Fourier展开和渤海海底拖曳系数CD[J].海洋与湖沼,1987,18(1):1-10.

共引文献103

同被引文献48

引证文献4

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部