期刊文献+

木薯和玉米原料丁醇发酵中丁醇丙酮质量比的图论理论计算及其验证 被引量:1

Theoretical calculation of butanol acetone mass ratio by graph theory and its experimental verification in cassava and corn media based butanol fermentations
下载PDF
导出
摘要 在丁醇发酵产溶剂阶段,乙酸和丁酸的生成途径、消耗途径同时存在,各自形成一个闭环路径。本研究利用图论对丁醇发酵中丁醇丙酮质量比进行了理论计算,并对以木薯和玉米为原料的丁醇发酵进行了模拟计算,结果表明:丁酸闭环路径(L2环)的代谢强度是影响丁醇丙酮质量比的主要因素,并且L2环的代谢强度越弱,丁醇丙酮质量比越高;与玉米原料丁醇发酵相比,木薯原料发酵的m(丁醇)/m(丙酮)提高了16.7%。实验结果证实了以上计算结果:在传统发酵、油醇萃取发酵和生物柴油萃取发酵中,以木薯(适时添加酵母浸粉)为原料的发酵批次与以玉米为原料的发酵批次相比,由于其丁酸闭环路径代谢强度较弱,相应发酵方式下丁醇丙酮质量比分别提高了12.9%、61.4%和6.7%,而且两种原料相应发酵方式的丁醇总产量和生产效率基本持平。另外,高丁醇丙酮质量比的木薯发酵所得改良型生物柴油中丁醇浓度与玉米发酵的相比提高了16%,性能得到进一步提高。 ABE fermentation is characterized with acetate butyrate formation and re-assimilation in multiple closed reaction loops during solventogenesis phase. In this study, we estimated butanol acetone mass ratio using graph theory for bio-butanol production utilizing cassava and corn based media. Theoretical calculations revealed that the metabolic strength of butyrate loop ( L2 ) dominantly influenced butanol acetone mass ratio and lower metabolic strength in butyrate loop led to a higher butanol acetone mass ratio, and the ratio could be increased by 16. 7% when using cassava based medium. Experimental results confirmed the theoretical estimations: weakened metabolic strength in butyrate loop using cassava based medium led to higher butanol acetone mass ratios in traditional fermentation and extractive fermentations with oleyl alcohol and biodiesel as the extractants, and butanol acetone mass ratios increased by 12. 9% , 61.4% and 6. 7% , respectively, while butanol yields and productivities stayed atcomparably high levels as compared with those of the fermentations butanol acetone mass ratios also greatly increased butanol content largely improve quality of property improved biodiesel in turn. using corn based medium. The in biodiesel for 16%, which higher would
出处 《生物加工过程》 CAS CSCD 2013年第4期1-7,共7页 Chinese Journal of Bioprocess Engineering
基金 国家自然科学基金(20976072) 国家重点基础研究发展计划(973计划)(2007CB714303)
关键词 丁醇丙酮质量比 木薯 图论 代谢分析 butanol acetone mass ratio cassava graph theory metabolic analysis
  • 相关文献

参考文献15

  • 1Jones D T, Woods D R. Acetone-butanol fermentation revisited [ J ]. Microbiol Rev, 1986,50 (4) : 484-524.
  • 2Wang S H,Zhu Y,Zhang Y P, et al. Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity [ J ]. Appl Microbiol Biotech, 2012, 93(3): 1021-1030.
  • 3Bahl H, Gottwald M, Kuhn A, et al. Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum [ J ]. Appl Environ Microb, 1986,52( 1 ) :169-172.
  • 4张益棻,陈军,杨蕴刘,焦瑞身.高丁醇比丙酮丁醇梭菌的选育与应用[J].工业微生物,1996,26(4):1-6. 被引量:14
  • 5Girbal L, Vascocelos I, Saint-Amans S, et al. How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH [ J ]. FEMS Microbiol Rev, 1995,16 (2/3) : 151-162.
  • 6Peguin S, Goma G, Deporme P, et al. Metabolic flexibility of Clostridium acetobutylicum in response to methyl viologen addition [J]. Appl Microbiol Biotech,1994,42(4) :611-616.
  • 7史仲平,潘丰.发酵过程解析、控制与检测技术[M].2版.北京:化学工业出版社,2010:179-183.
  • 8Shi H, Shimizu K. An integrated metabolic pathway analysis based on metabolic signal flow diagram and cellular energetics for Saccharomyces cerevisiae [ J ]. J Ferment Bioeng, 1997,83 ( 3 ) : 275-280.
  • 9Shi H, Shimizu K. On-line metabolic pathway analysis based on metabolic signal flow diagram [ J ]. Biotechnol Bioeng, 1998,58 (2/3) :139-148.
  • 10Roffler S R,Blanch H W,Wilke C R. In-situ recovery of butanol during fermentation, part 1 : batch extractive fermentation [ J ]. Bioproc Biosyst Eng,1987,2( 1 ) :1-12.

二级参考文献3

共引文献14

同被引文献13

  • 1Li Z G, Shi Z P, Li X, et al. Evaluation of high butanol/acetone ratios in ABE fermentations with cassava by graph theory and NADH regeneration analysis. Biotechnology and Bioprocess Engineering, 2013, 18: 759-769.
  • 2Jang Y S, Lee J Y, Lee J, et al. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. MBio, 2012, 3(5): 1-9.
  • 3Green E M, Bennett G N. Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. Applied Biochemistry and Biotechnology, 1996, 57: 213-221.
  • 4Green E M, Boynton Z L, Harris L M, et al. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology, 1996, 142(8): 2079-2086.
  • 5Desai R P, Papoutsakis E T. Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Applied and Environmental Microbiology, 1999, 65(3): 936-945.
  • 6Chen C, Blaschek H. Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101. Applied Microbiology and Biotechnology, 1999, 52(2): 170-173.
  • 7Tashiro Y, Takeda K, Kobayashi G, et al. High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. Journal of Bioscience and Bioengineering, 2004, 98(4): 263-268.
  • 8Vallino J J, Stephanopoulos G. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnology and Bioengineering, 1993, 41(6): 633-646.
  • 9Majewski R, Domach M. Simple constrained-optimization view of acetate overflow in E. coli. Biotechnology and Bioengineering, 1990, 35(7): 732-738.
  • 10Varma A, Palsson B O. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Applied and Environmental Microbiology, 1994, 60(10): 3724-3731.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部