期刊文献+

基于听觉掩蔽效应和最优平滑的语音增强算法 被引量:2

Speech Enhancement Algorithm Based on Auditory Masking Effect and Optimal Smoothing
下载PDF
导出
摘要 针对谱减法在低信噪比下音乐噪声较大的缺点,通过分析人耳听觉掩蔽特性,提出一种改进的语音增强算法。在维纳滤波法的基础上结合掩蔽效应调整增益系数,采用非平稳环境下的最小约束递归平均算法进行噪声参数估计,利用最小均方误差准则的最优平滑因子对增强语音进行平滑处理,从而进一步消除音乐噪声。仿真结果表明,与改进谱减法与维纳滤波法相比,该算法在低信噪比情况下能有效抑制背景噪声和残余的音乐噪声,保持较好的语音质量和清晰度。 An improved speech enhancement algorithm is proposed by analysis the human auditory masking properties when a serious problems of residual musical noise brought by the Spectral subtraction in low Signal Noise Ratio(SNR).The gain parameters are adjusted by combined human auditory masking properties with wiener filter.Noise estimation is used by the Minimum Controlled Recursive Averaging(MCRA) algorithm in non-stationary environment.In order to further eliminate the musical noise,the optimal smoothing factor based on Minimum Mean Square Error(MMSE) is used to smooth the enhanced voice.Simulation results show that compared with the improved spectral subtraction and Wiener filtering method,the algorithm can effectively suppress background noise and residual musical noise as well as maintaining speech quality and intelligibility in low SNR.
出处 《计算机工程》 CAS CSCD 2013年第8期27-30,37,共5页 Computer Engineering
基金 国家自然科学基金资助重点项目(61134006)
关键词 语音增强 听觉掩蔽效应 最优平滑 维纳滤波 最小约束递归平均法 最小均方误差 speech enhancement auditory masking effect optimal smoothing wiener filtering Minimum Controlled Recursive Averaging(MCRA) method Minimum Mean Square Error(MMSE)
  • 相关文献

参考文献8

  • 1Xu Yansun,Weaver J B,Healy D M,et al.Wavelet TransformDomain Filters:A Spatially Selective Noise FiltrationTechnique[J].IEEE Transactions on Image Processing,1996,3(6):747-758.
  • 2Medina C,Apolinario J A A.Wavelet Denoising of SpeechUsing Neural Networks for Threshold Selection[J].ElectronicsLetters,2003,39(25):1869-1871.
  • 3Jeon Y Y,Lee S M.A Speech Enhancement Algorithm Basedon Human Psychoacoustic Property[J].Transactions onKorean Institute of Electrical Engineers,2010,59(6):1120-1125.
  • 4朱学文,杨道淳,王炜,牟峰,徐柏龄.帧同步混合小波包变换模拟听觉模型的语音增强的研究[J].声学学报,2003,28(1):12-16. 被引量:5
  • 5Lev A H,Ephraim Y.Extension of the Signal Subspace SpeechEnhancement Approach to Colored Noise[J].IEEE SignalProcess,2003,10(4):104-106.
  • 6Cohen I.Noise Spectrum Estimation in Adverse EnvironmentsImproved Minima Controlled Recursive Averaging[J].IEEETransactions on Speech and Audio Processing,2003,11(5):393-399.
  • 7Johnston J D.Transform Coding of Audio Signals UsingPerceptual Noise Criteria[J].IEEE Journal on Selected Areasin Communications,1988,6(2):314-323.
  • 8卜凡亮,王为民,戴启军,陈砚圃.基于噪声被掩蔽概率的优化语音增强方法[J].电子与信息学报,2005,27(5):753-756. 被引量:16

二级参考文献16

  • 1曹志刚,郑文涛.基于短时谱最小均方误差估计的语音增强和剩余噪声衰减[J].电子学报,1993,21(4):7-12. 被引量:7
  • 2陆生礼,时龙兴,余崇智,魏荣爵.听觉模拟的语音增强方法[J].声学学报,1996,21(6):879-883. 被引量:4
  • 3沈永欢 梁在中 等.实用数学手册[M].北京:科学出版社,1997..
  • 4Ephraim Y, Malah D. Speech enhancement using a minimum mean square error short-time spectral amplitude estimator. IEEE Trans. onASSP, 1984, 32(6): 1109- 1121.
  • 5Cappe O. Elimination of the musical noise phenomenon with the Ephraim and Malah noise suppressor. IEEE Trans. on Speech and Audio Processing, 1994, 2(3): 345 - 349.
  • 6McAulay R J, Malpass M L. Speech enhancement using a soft decision noise suppression filter. IEEE Trans. on ASSP, 1980,28(2): 137- 145.
  • 7Virag N. Single channel speech enhancement based on masking properties of the human auditory system. IEEE Trans. on Speech and Audio Processing, 1999, 7(2): 126- 137.
  • 8Tsoukalas D E, M Paraskevas, Mourjopoulos J N. Speech enhancement using psychoacoustic criteria. ICASSP, Salt Lake City, 1993, Ⅱ: 359 - 362.
  • 9Azirani A, Jeannes R L B, Faucon G. Optimizing speech enhancement by exploiting masking properties of the human ear.ICASSP, Detroit, 1995, Ⅰ: 800 - 803.
  • 10Bu Fanliang, Hou Zhen, Wen Yuan, et al.. An estimation of noise parameters in noisy speech signals. NCMMSC6, Shenzhen, 2001:71 - 74.

共引文献19

同被引文献36

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部