期刊文献+

基于均衡有偏支持向量机的软件缺陷预测 被引量:1

Software Defect Prediction Based on Balanced and Biased Support Vector Machine
下载PDF
导出
摘要 针对软件缺陷预测中的样本集数量少和分布不对称问题,提出一种基于均衡有偏支持向量机的软件缺陷预测方法。该方法通过标记样本集和未标记样本集进行半监督学习,在少量非对称的标记样本集上,利用有偏支持向量机进行泛化学习。在半监督学习的迭代过程中,采用重采样策略平衡样本集以消除大量不对称的未标记样本集对软件缺陷预测的性能影响。在基准数据集上的实验结果表明,该方法能够有效地对类别不均衡的样本集进行软件缺陷预测。 There are two important issues in software defect prediction.It is difficult to collect a large amount of labeled training data to learn a good model.The data set is always imbalanced,since the software system contains much fewer defective modules than non-defective modules.In order to solve out these two problems,this paper proposes a novel semi-supervised learning approach named Balanced and Biased Support Vector Machine(B2SVM).The method exploits the abundant unlabeled samples to improve the prediction accuracy,as well as employs sampling technology to handle the class-imbalance problem during the Biased Support Vector Machine(BSVM) learning process.Experimental results on class-imbalance dataset show that this method can go on software defect prediction for class imbalance sample set.
作者 李倩茹 姚伟
出处 《计算机工程》 CAS CSCD 2013年第8期87-91,共5页 Computer Engineering
关键词 机器学习 半监督学习 软件缺陷预测 有偏支持向量机 重采样 machine learning semi-supervised learning software defect prediction Biased Support Vector Machine(BSVM) resampling
  • 相关文献

参考文献14

  • 1王青,伍书剑,李明树.软件缺陷预测技术[J].软件学报,2008,19(7):1565-1580. 被引量:149
  • 2Basili V R,Briand L C,Melo W L.A Validation of Objec-toriented Design Metrics as Quality Indicators[J].IEEETransactions on Software Engineering,1996,22(10):751-761.
  • 3Khoshgoftaar T M,Yuan Xiaojing,Allen E B.BalancingMisclassification Rates in Classification-tree Models ofSoftware Quality[J].Empirical Software Engineering,2000,5(4):313-330.
  • 4Khoshgoftaar T M,Allen E B.Neural Networks for SoftwareQuality Prediction[M]//Pedrycz W,Peters J F.ComputationalIntelligence in Software Engineering.Singapore:WorldScientific,1998:33-63.
  • 5Pérez-Mi ana E,Gras J.Improving Fault Prediction UsingBayesian Networks for the Development of EmbeddedSoftware Applications[J].Software Testing,Verification&Reliability,2006,16(3):157-174.
  • 6Xing Fei,Guo Ping,Lyu M R.A Novel Method for EarlySoftware Quality Prediction Based on Support VectorMachine[C]//Proceedings of the 16th IEEE InternationalSymposium on Software Reliability Engineering.Chicago,USA:IEEE Press,2005.
  • 7Lessmann S,Baesens B,Mues C,et al.Benchmarking Classi-fication Models for Software Defect Prediction:A ProposedFramework and Novel Findings[J].IEEE Transactions onSoftware Engineering,2008,34(4):485-496.
  • 8姜远,黎铭,周志华.Software Defect Detection with ROCUS[J].Journal of Computer Science & Technology,2011,26(2):328-342. 被引量:11
  • 9Seliya N,Khoshgoftaar T M.Software Quality Estimationwith Limited Fault Data:A Semi-supervised LearningPerspective[J].Software Quality Journal,2007,15(3):327-344.
  • 10Pelayo L,Dick S.Applying Novel Resampling Strategies toSoftware Defect Prediction[C]//Proceedings of AnnualMeeting of the North American Fuzzy Information ProcessingSociety.San Diego,USA:IEEE Press,2007:69-72.

二级参考文献73

共引文献175

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部