期刊文献+

基于贝叶斯统计推断的离散分布估计算法 被引量:1

Discrete Distribution Estimation Algorithm Based on Bayesian Statistical Inference
下载PDF
导出
摘要 将贝叶斯统计推断理论引入分布估计算法概率模型中,提出一种基于贝叶斯统计推断的离散分布估计算法。根据离散优化问题中解的分布规律建立先验概率模型,将优势群体的概率模型和二元边缘分布算法中森林结构的概率模型相结合,得出条件概率模型,利用贝叶斯统计推断,并结合上述2种概率模型建立后验概率模型,以指导新群体的产生。仿真结果表明,该算法求解gr21旅行商问题的收敛速度大于EDAs1算法,在种群规模、最大运行代数等参数固定的情况下,分别分析结合速率和学习速率对算法性能的影响,得出当其值取0.2时,算法性能最稳定。 Bayesian statistical inference theory is added in the process of building the probability model of estimation of distribution algorithm.This paper proposes a discrete distribution estimation algorithm based on Bayesian statistical inference.A model of a priori probability is built according to the distributing regularity of the problem’s solution.The model of conditional probability is constructed through combining the probability model of advantage groups with forest structure of Bivariate Marginal Distribution Algorithm(BMDA).The model of posterior probability is given by combining the above mentioned probability model to guide new population generating.Simulation results show that the algorithm convergence rate is greater than the EDAs1 when solving the gr21 Traveling Salesman Problem(TSP).Analyzing the effect of combining speed and learning rate for this algorithm under the condition that parameters are fixed,such as population size and maximum running algebra etc.The results show when their values are 0.2,the algorithm performance is the most stable.
出处 《计算机工程》 CAS CSCD 2013年第8期249-252,共4页 Computer Engineering
关键词 旅行商问题 森林结构 贝叶斯统计推断 后验概率 变量相关 分布估计算法 Traveling Salesman Problem(TSP) forest structure Bayesian statistical inference posterior probability variable relevance distribution estimation algorithm
  • 相关文献

参考文献9

二级参考文献139

  • 1邓娟,陈莘萌.一种基于最大相似性的TSP问题求解算法[J].计算机工程,2004,30(17):1-2. 被引量:12
  • 2敖友云,迟洪钦.基于遗传算法求解TSP问题的一种算法[J].计算机与数字工程,2006,34(4):52-55. 被引量:17
  • 3周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:210
  • 4Baluja S.. Population-based incremental learning: A method for integrating genetic searching based function optimization and competing learning. Carnegie Mellon University, Pittsburgh, PA, USA: Technical Report CMU-CS-94-163, 1994
  • 5Muhlenbein H.. The equation for response to selection and its use for prediction. Evolutionary Computation, 1998, 5(3): 303~346
  • 6De Bonet, Isbell J.S., Viola P.. MIMIC: Finding optima by estimating probability density. In: Mozer M.C., Jordan M.I., Petsche T. eds.. Advances in Neural Information Processing System. Cambridge: The MIT Press, 1997, 424~431
  • 7Larranga P., Etxeberria R., Lozano A., Pefia J.M.. Optimization by learning and simulation of Bayesian and Gaussian networks. In: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program, Las Vegas, Nevada, USA, 2000, 201~204
  • 8Baluja S., Davies S.. Using optimal dependency-tree for combinatorial optimization: Learning the structure of the search space. Carnegie Mellon University, Pittsburgh, PA, USA: Technical Report CMU-CS-97-107, 1997
  • 9Soto M., Ochoa A., Acid S. et al.. Introduction the polytree approximation of distribution algorithm. In: Proceedings of the 2nd Symposium on Artificial Intelligent Adaptive Systems, CIMAF'99, La Habana, 1999, 360~367
  • 10Peliken M., Muhlenbein H.. The bivariate marginal distribution algorithm. In: Roy R., Furnhashi T., Chandhery P.K. eds.. Advance in Soft Computing Engineering Design and Manufacturing. London: Springer-Verlag, 1999, 521~535

共引文献220

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部