期刊文献+

基于粗集的频率约简与动态约简对不一致表分类的方法 被引量:3

A Method of Classification for Inconsistent Tables by Combining Frequency Reducts with Dynamic Reducts Based on Rough Set
下载PDF
导出
摘要 针对不一致决策表对于信息分类精度与稳定性的不利影响,提出基于粗集理论的利用不同形式频率约简与动态约简技术相结合的信息分类方法。首先利用频率约简对不一致决策表进行一致性处理,然后利用动态约简技术对获取的一致决策表进行分类。通过测试系统计算表明,充分结合两者的优良特性,在不损失数据信息前提下,提高了不一致决策表的分类精度和稳定性。 According to the adverse effect of inconsistent decision tables on accuracy and stability of information classification,this paper proposes a method of classification for inconsistent decision tables by combining multiform frequency reducts with dynamic reducts based on rough set. The method firstly converts inconsistent .decision tables into consistent decision tables by frequency reducts, then classifies consistent decision tables by dynamic reducts. Experiment show: On the premise of avoiding the information loss, the method make the best of excellent characteristics of two reducts to improve accuracy and stability of information classification of inconsistent decision tables.
作者 钟志宏
出处 《软件》 2013年第6期47-50,共4页 Software
关键词 不一致决策表 分类 动态约简 频率约简 粗糙集 Inconsistent Decision Table Information Classification Dynamic Reducts Frequency Reducts Rough Set
  • 相关文献

参考文献12

  • 1刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 2谭天乐,宋执环,李平.信息系统数据清洗、规则提取的矩阵算法[J].信息与控制,2003,32(4):289-294. 被引量:22
  • 3LECH POLKOWSKI, SHUSAKU TSUMOTO, TSAU Y. LIN. Rough set methods and application: new developments in knowledge discovery in information systems[M]. Physica-Verlag Heidelberg, 2000,235-285.
  • 4BAZAN J., SKOWRON A. AND SYNAK, P. Dynamic reducts as a tool for extracting laws from decisions tables[M]. in: Z. W. Ras, M. Zemankova (eds.), Proceedings of the Eighth Symposium on Methodologies for Intelligent Systems Charlotte, NC, October 16-19, Lecture Notes in Artificial Intelligence 869, Springer-Verlag (1994), 346-355.
  • 5JAN G. BAZAN. A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables[M], in:Rough sets in knowledge discovery. Heidelberg: Physica-verlag (1998) 321-365.
  • 6JAN G. BAZAN. Dynamic reducts and statistical inference[J]. In: Proceedings of the Sixth International Conference, Information Processing and Management of Uncertainty in Knowledge- Based Systems (IPMU' 96), July 1-5, Granada, Spain (1996) 2 1147-1152.
  • 7IAROSLAW STEPANIUK. Knowledge discovery by application of rough set models[M], in: Lech Polkowski, Shusaku Tsumoto, Tsau Y. Lin, Rough set methods and application: new developments in knowledge discovery in information systems- Physica-Verlag Heidelberg, 2000, 173-174.
  • 8黄兵,周献中.不一致决策表中规则提取的矩阵算法[J].系统工程与电子技术,2005,27(3):441-445. 被引量:12
  • 9王国胤.决策表核属性的计算方法[J].计算机学报,2003,26(5):611-615. 被引量:218
  • 10刘亚波,胡陈勇,刘大有.基于粗糙集的识别矩阵值简式求取算法DMBVR[J].吉林大学学报(理学版),2004,42(2):221-225. 被引量:4

二级参考文献29

  • 1Lan Shu,Mo Zhi Wen,Hu Dan. Methods of learning rules based on rough set: LBR and LEM3 [ A ]. IFSA World Congress and 20th NAFIPS International Couference [C]. 2001,2:753 -756.
  • 2Bakar A A,Sulaiman M N,Othman M,et al. Fining minimal reduct with binary integer programming in data mining [A]. TENCON 2000 [C]. 2000,(2) :141 -146.
  • 3Felix R, Ushio T. Rough sets-based machine learning using a binary discernibility matrix [ A ]. Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials [C]. 1999,1:299-305.
  • 4Guan J W ,Bell D A,Guan Z. Matrix computation for information systems [ J ]. Information Sciences,2001,131, ( 1 - 4) : 129 -156.
  • 5Zhong Ning,Dong Juzhen,Ohsuga Setsuo. Rule discovery by soft induction techniques[J]. Neurocomputing,2001,36 ( 1 - 4) :171 -204.
  • 6Fujimori S, Kaiya T, Inoue T. Analysis of discharge currents with discernibility matrices [ A]. Proceedings of 1998 International Symposium on Electrical Insulating Materials [ C ]. 1998.649-652.
  • 7Miao Duoqian, Wang Jue. Information-based algerithm for reduction of knowledge [ A ]. IEEE International Conference on Intelligent Processing Systems [C]. 1997,2:1155 -1158.
  • 8王国胤.Rough集理论与知识获取[M].西安交通大学出版社,2003,3..
  • 9Guan J W, Bell D A, Guan Z. Matrix computation for information svstems[J]. Information Sciences.2001.131:129 - 156.
  • 10Mi Ju-Sheng, Wu Wei-Zhi, Zhang Wen-Xiu. Approaches to approximation reducts in inconsistent decision Tables [ A ]. Wang G,Rough Set. Fuzzy Sets, Data Mining, and Granular Computing [ C ].2003. 283 - 286.

共引文献601

同被引文献16

  • 1张春明.业务规则管理系统在信贷管理系统中的应用研究[J].软件,2013,34(8):27-30. 被引量:3
  • 2门蓬涛,张秀彬,张峰,孙志旻,吴炯.图像特征识别方法研究[J].微计算机信息,2004,20(5):103-105. 被引量:22
  • 3李秀文;高锦春;刘元安.基于非理想信道感知的认知MIMO-OFDM系统的最优功率分配[J]新型工业化,2012(06):6-14.
  • 4章毓晋.图象处理和分析[M]北京,新华大学出版社,1999.
  • 5Hong Zhu,Shifei Ding,Xinzheng Xu,Li Xu.A parallel attribute reduction algorithm based on Affinity Propagation clustering[J]. Journal of Computers . 2013 (4)
  • 6Qinghua Hu,Daren Yu,Jinfu Liu,Congxin Wu.Neighborhood rough set based heterogeneous feature subset selection[J]. Information Sciences . 2008 (18)
  • 7Rahul Karthik Sivagaminathan,Sreeram Ramakrishnan.A hybrid approach for feature subset selection using neural networks and ant colony optimization[J]. Expert Systems With Applications . 2006 (1)
  • 8Peng Hanchuan,Long Fuhui,Ding Chris.Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2005
  • 9Yu, L,H. Liu.Feature selection for high-dimensional data:A fast correlation-based filter solution. ICML . 2003
  • 10Hall M A.Correlation-based feature selection for machine learning. Journal of Women s Health . 1999

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部