摘要
Neuroinflammation has been recognized to play a critical role in the pathogenesis of Alzheimer's disease (AD), which is pathologically characterized by the accumulation of senile plaques containing activated microglia and amyloid β-peptides (Aβ). In the present study, we examined the neuroprotective effects of hydrogen sulfide (H2S) on neuroinflammation in rats with Aβ1-40 hippocampal injection. We found that Aβ-induced rats exhibited a disorder of pyramidal cell layer arrangement, and a decrease of mean pyramidal cell number in the CA1 hippocampal region compared with those in sham operated rats. NaHS (a donor of H2S, 5.6 mg/kg/d, i.p.) treatment for 3 weeks rescued neuronal cell death significantly. Moreover, we found that H2S dramatically suppressed the release of TNF-α, IL-1β and IL-6 in the hippocampus. Consistently, both immunohistochemistry and Western blotting assays showed that H2S inhibited the upregulation of COX-2 and the activation of NF-κB in the hippocampus. In conclusion, our data indicate that H2S suppresses neuroinflammation via inhibition of the NF-κB activation pathway in the Aβ-induced rat model and has potential value for AD therapy.
Neuroinflammation has been recognized to play a critical role in the pathogenesis of Alzheimer's disease (AD), which is pathologically characterized by the accumulation of senile plaques containing activated microglia and amyloid β-peptides (Aβ). In the present study, we examined the neuroprotective effects of hydrogen sulfide (H2S) on neuroinflammation in rats with Aβ1-40 hippocampal injection. We found that Aβ-induced rats exhibited a disorder of pyramidal cell layer arrangement, and a decrease of mean pyramidal cell number in the CA1 hippocampal region compared with those in sham operated rats. NaHS (a donor of H2S, 5.6 mg/kg/d, i.p.) treatment for 3 weeks rescued neuronal cell death significantly. Moreover, we found that H2S dramatically suppressed the release of TNF-α, IL-1β and IL-6 in the hippocampus. Consistently, both immunohistochemistry and Western blotting assays showed that H2S inhibited the upregulation of COX-2 and the activation of NF-κB in the hippocampus. In conclusion, our data indicate that H2S suppresses neuroinflammation via inhibition of the NF-κB activation pathway in the Aβ-induced rat model and has potential value for AD therapy.
基金
supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.Jx10131801095 to HongZhou)