期刊文献+

基于CDVRS的虚拟机资源调度策略研究

The research of virtual machine resources scheduling based on CDVRS in cloud computing
下载PDF
导出
摘要 云计算将各种处理器、存储以及网络等物理资源虚拟化为虚拟机,为用户分配相应的虚拟机以及将虚拟机调度到物理资源上是云计算中一个重要问题.提出一种基于分类挖掘的虚拟机资源调度模型及算法CDVRS(virtual machine resources scheduling based on classification data mining)解决该问题,采集用户访问虚拟机及虚拟机映射物理资源的历史信息,采用改进的分类挖掘算法对其进行挖掘,得到指导虚拟机资源调度的分类规则和模式,在此基础上实施虚拟机资源调度.对模型和算法进行仿真,实验结果表明采用CDVRS算法相比GA(genetic algorithm)、PSO(particle swarm optimization)等算法在资源利用率上有较大的改善,能有效提高云计算中虚拟机资源调度的效率. The physical resources were usually abstracted to virtual resources in cloud computing, such as computing resources, storage resources and network resources etc. How to schedule these virtual machines and all kinds of physical resources in clouds based on users' service requests is important, and it can affect the efficiency of cloud computing platform. A virtual machine resources scheduling algorithm based on classification data mining (CDVRS) was proposed in this paper. At first, we gathered and analyzed the historical data of users' accessing to virtual machines and virtual machines map to physical resources, and then got the classification rules and patterns by application of the improved classification mining algorithm. Finally, we scheduled new arrival jobs to virtual machines in cloud computing based on these classification rules. Experiments showed that CDVRS algorithm has better performance in virtual machines and physical resources utilization compared with other algorithms, and it could improve the efficiency of resources in cloud computing environment.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2013年第4期40-45,共6页 Journal of Anhui University(Natural Science Edition)
关键词 云计算 虚拟机 分类挖掘 资源调度 虚拟化 cloud computing virtual machine classification data mining resources scheduling virtualization
  • 相关文献

参考文献13

  • 1张伟哲,张宏莉,张迪,程涛.云计算平台中多虚拟机内存协同优化策略研究[J].计算机学报,2011,34(12):2265-2277. 被引量:27
  • 2岳冬利,刘海涛,孙傲冰.IaaS公有云平台调度模型研究[J].计算机工程与设计,2011,32(6):1889-1892. 被引量:26
  • 3Jia L I, Mei K Q, Zhong M, et al. Online optimization for scheduling preemptable tasks on IaaS cloud systems [ J ]. Journal of Parallel and Distributed Computing,2012,72(2) :666-677.
  • 4Marco A S, Netto C V, Michael K, et al. Use of run time predictions for automatic co-allocation of multi-cluster resources for iterative parallel applications [ J ]. J Parallel Distrib Comput, 2011,36 : 1388-1399.
  • 5张水平,邬海艳.基于元胞自动机遗传算法的云资源调度[J].计算机工程,2012,38(11):11-13. 被引量:21
  • 6Zhao P, Huang T L. Research of multi-resource dynamic job-shop scheduling based on the Hybrid genetic algorithm [ C ]. Third International Conference on Genetic and Evolutionary Computing, 2009:81-83.
  • 7Xiang L, Yanl L, Zu L. The comparative research Of solving problems of equilibrium and optimizing multi-resources with GA and PSO[ C ]. International Conference on Computational Intelligence and Security, 2008:201-203.
  • 8方锦明.云计算中基于NSGA Ⅱ的虚拟资源调度算法[J].计算机工程与设计,2012,33(4):1452-1457. 被引量:17
  • 9刘永,王新华,王朕,隋敬麒.节能及信任驱动的虚拟机资源调度[J].计算机应用研究,2012,29(7):2479-2483. 被引量:13
  • 10Ta N B, Li X R, Goh R S. A framework for dynamic resource provisioning and adaptation in IaaS clouds[ C ]. Third IEEE International Conference on Coud Computing Technology and Science,2011:312-319.

二级参考文献49

  • 1张伟哲,刘欣然,云晓春,张宏莉,胡铭曾,刘凯鹏.信任驱动的网格作业调度算法[J].通信学报,2006,27(2):73-79. 被引量:33
  • 2ALOISIO G, CAFARO M, EPICOCO I, et al. Resource and service discovery in the iGrid information service[ EB/OL]. [ 2009 - 06 - 15]. http://www, gridlab, org/WorkPackages/wp-10/Documents/ igrid-iccsa, pdf.
  • 3BRADLEY A, CURRANN K, PARRZ G. Resource discovery and management in computational GRID environments[ J]. International Journal of Communication Systems, 2007, 19(6) : 639 -657.
  • 4CHEN P, XU Z, ZHANG B. A solution to QoS control and availability promotion in complex grid computing[ C]// Proceedings of 12th IEEE International Conference on Networks. New York: IEEE, 2004:403 - 407.
  • 5LI CHUNLIN, LI LAYUAN. Utility based multiple QoS guaranteed resource scheduling optimization in grid computing[ C]// Proeoedings of the International Conference on Computing: Theory and Applications. Washington, DC: IEEE Computer Society, 2009: 165-169.
  • 6BUYYA R, ABRAMSON D, GIDDY J. Nimrod/G: An architecture or a resource management and scheduling system in a global computational grid[C]//Proceedings of the 4th International Conference,/ Exhibition on High Performance Computing in the Asia-Pacific Region. New York: IEEE, 2000:283 -289.
  • 7PLESTYS R, VILUTIS G, SANDONAVICIUS D. The measurement of grid QoS parameters[ C]//Proceedings of 29th International Conference on Information Technology Interfaces. New York: IEEE, 2007:703-707.
  • 8Wikipedia. Cloud computing [EB/OL] .http://en.wikipedia.org/ wiki/Cloud_computing,2010-10-30/2010-11-01.
  • 9NIST. Cloud computing [EB/OL] .http://csrc.nist. gov/groups/ SNS/cloud-computing/,Modified 2010-08-22/2010-11-01.
  • 10Amazon.Amazon elastic compute cloud (Amazon EC2) [EB/ OL].http://aws.amazon.com/ec2,2008-12-21/2010- 10-01.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部