期刊文献+

一种完备数据流的不确定数据择优算法 被引量:1

Algorithm for Choosing Optimal Uncertain Data of Complete Data Streams
下载PDF
导出
摘要 针对射频识别(RFID)数据与上层应用需求之间存在的信息鸿沟及其需要实时处理的特征,提出了一种完备数据流的不确定数据择优算法。分析了常规粒子滤波方法存在的不足之处,采用基于熵的方法推导属性最优权重,并利用可能度矩阵选择最佳粒子,从不确定RFID数据流上有效捕获对象的当前状态。算法的优化结果使得采样集向后验概率密度分布取值较大的区域运动,从而提高了算法计算效率并且显著地减少了精确定位所需的粒子数。最后,通过实例表明了该方法能够有效度量RFID数据中蕴含的不确定性。 To address the information gap between RFID data and the requirements of upstream applications, the chara- cter of real time of sensor data, an algorithm for choosing the optimal uncertain data of complete data streams was pro- posed. The drawbacks of generic particle filter were analyzed. Then an entropy-based method was adopted to estimate the most likely attribute weight for each object, by using possibility degree matrix to select optimal particles~ to effi- ciently capture the possible locations and containment for tagged objects. The performance of the generic particle filter is improved. In this method, though particle optimization, particles are moved to the regions where they have larger values of posterior density function. The experimental results show the accuracy and efficiency and the number of particles nee- ded for accurate location are reduced dramatically. Finally,a numerical example was given to show the feasibility and ef- fectiveness in terms of measurement of underlying uncertainties over RFID data.
出处 《计算机科学》 CSCD 北大核心 2013年第7期182-186,共5页 Computer Science
基金 国家自然科学基金资助项目(30873449) 江苏省科技支撑计划项目(BE2011012 BE2012184) 江苏省中医药科技项目(LZ11203)资助
关键词 物联网 射频识别数据流 优化估计 粒子滤波 Internet of things,Radio frequency identification data streams,Optimal estimation,Particle filter
  • 相关文献

参考文献10

  • 1聂艳明,李战怀,陈群.针对不确定射频识别数据流的改进概率推导方法[J].西安交通大学学报,2011,45(12):45-52. 被引量:3
  • 2Sarma A D,Theobald M,Widom 5. Exploiting lineage for confi- dence computation in uncertain and probabilisfic databases[A]// Proceedings of the 24th IEEE International Conference on Data Engineering[C]. Washington, DC: IEEE Computer Society Can- cun,2008: 1023-1032.
  • 3Benjelloun O, Sarma A, Halevy A, et al. Uldbs: Databases with uncertainty and lineage[A]// Proceeding of the 32th Interna- tional Corderance on Very Large Data Base (VLDB06) [C]. Seoul: VLDB Endowment, 2006: 953-964.
  • 4Sarma A D, Theobald M,Widom J. Exploiting lineage for confi- dence computation in uncertain and probabilistic databases[A]// Proceedings of the 24th IEEE International Conference on Data Engineering[C]. Washington, IX;: IEEE Compu ter Society Can- eun,2008:1023-1032.
  • 5王永利,钱江波,孙淑荣,张功萱,刘冬梅.AMUR:一种RFID数据不确定性的自适应度量算法[J].电子学报,2011,39(3):579-584. 被引量:5
  • 6Christopher Re, Letchner J, Balazinksa M, et al. Event queries on correlated probabilistic streams [A]// Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data[C]. New York, NY: ACM, 2008:715-728.
  • 7方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 8Shawn R J, Minos G, Michael J F. Adaptive cleaning for RFID data streams[ATffProceeding s of the 32nd International Con- ferenee on Very Large Data Bases( VLD 1306) [C]. Seoul: VLDB Endowment, 2006 : 167-174.
  • 9Gordon N J, Salmond D J, Smith A F M. Novel approach to non- linear/non gaussian bayesian state estimation[J]. IEE Procee- dings F In Radar and Signal Processing,2002,140(2):107- 113.
  • 10Wu Z B,Chen Y H. The maximizing deviation method for group multiple attribute decision making under linguistic environment [J]. Fuzzy Sets and Systems, 2007,158(14) : 1608-1617.

二级参考文献35

  • 1方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 2Derakhshan R, Orlowska M E, Li Xue. RFID data manage-melt: Challenges and opportunities [ A ]. Proceeding of IEEE. International Conference on RFID[C]. Dallas:IEEE Computer Society,2007.175 -182.
  • 3Benjeloun O, Sarma A, Halevy A, Widom J. Uldbs: Dalabases with uncertainty and lineage[A] .Proceeding of the 32th Inter-national Conferance on Very Large Data Base (VLDB06) EC]. ScouI:VLDB Endowment,2006.953 -964.
  • 4Sarma A D, Theobald M,Widom J. Exploiting lineage for con-fidence computation in uncertain and probabilistic databases [ A]. Proceedings of the 24th IEEE International Conference on Data Engineering[ C]. Washington, DC: IEEE Computer Soci-ety Cancun,2008.1023 -1032.
  • 5Coates M. Distributed particle filters for sensor networks[ A]. Proceedings of the 3rd International Conference on Information Processing in Sensor Networks (IPSN04)[ C] .New Ycrk,NY: ACM,2004.99-107.
  • 6Hue C, Cadre J, Perez P. Sequential Monte Carlo methods multiple target Iracking and data fusion [ J ]. IEEE. Tram on Signal Processing,2002,50(2) :309 -325.
  • 7FOX D. Adapting the sample size in lain-title filters lhrough KI.D-Sampling[ J]. The International Journal of Robotics Re-search,2003,22(12) :985 -1003.
  • 8Christopher Re, Letchner J, Bslaziuksa M, Suciu D. Event queries on correlated probabilistic streams[ A]. Proceedings of the 2008 ACM SIGMOD International Confetence on Manage-ment of Data[C]. New York,NY:ACM,2008.715 -728.
  • 9Shawn R J,Minos G,Michael J F,Adaptive cleaning for RFID data streams[ A]. Proceedings of the 32nd International Confer-ence on Very Large Data Bases(VLDB06) [C].SeouI:VLDB Endowment, 2006.167 -174.
  • 10Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-gaussian bayesian state estimation[ J] .IEE Pro-ceedings F In Radar and Signal Processing,2002,140(2):107 -113.

共引文献100

同被引文献17

  • 1王涛,李舟军,胡小华,颜跃进,陈火旺.一种高效的数据流挖掘增量模糊决策树分类算法[J].计算机学报,2007,30(8):1244-1250. 被引量:18
  • 2薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 3陈英,徐罡,顾国昌.一种本体和上下文知识集成化的数据挖掘方法[J].软件学报,2007,18(10):2507-2515. 被引量:13
  • 4Yick J, Ghosald M B. Wireless sensor network sur vey[J]. IEEEComput Netw, 2008, 52(12): 2292.
  • 5Chouhan S, Bose R, Balakrishnan M. Integrated energy analysis of error correcting codes and modu- lation for energy efficient wireless sensor nodes[J]. IEEE Trans Wireless Commun, 2009, 8 ( 10):5348.
  • 6Liu L, Kantarcioglu M, Thuraisingham B. The ap- plicability of the perturbation based privacy preser- ving data mining for real-world data[J]. Data Knowl Eng, 2008, 65(1): 5.
  • 7Pinkas B. Cryptographic techniques for privacy-pre- serving data mining[J]. ACM SIGKDD Exp Newsl, 2002, 4(2): 12.
  • 8Vassilions S V, Elisa B, Igor N F, et al. State-of- the-art in privacy preserving data mining[J]. ACM SIGMOD Rec, 2004, 33(1): 50.
  • 9Zhu G P, Sam K. Gbest-guided artificial bee colony algorithm for numerical function optimization [J]. Appl Math Comput, 2010, 217(7): 3166.
  • 10Pan Q K, Tasgetiren M F, Suganthan P N, et al. A discrete artificial bee colony algorithm for the lot- streaming flow shop scheduling problem[J]. Inform Sci, 2011, 181(12): 2455.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部