期刊文献+

改进的BPSO的特征基因选择方法及其在结肠癌检测中的应用研究 被引量:4

Feature Gene Selection Based on Improved Binary Particle Swarm Optimization Algorithm and its Application in Detection of Colon Cancer
下载PDF
导出
摘要 为了避免二进制粒子群算法(BPSO)容易陷入局部极值的缺陷,提出了一种改进的二进制粒子群算法(IBP-SO)。该算法在运行过程中引入遗传算法的交叉和变异策略,以便增加种群的多样性,避免粒子的早熟收敛;同时采用免疫算法的疫苗机制,通过合理的疫苗提取、疫苗接种、疫苗选择有效地抑制种群退化的可能。首先采用Wilcoxon秩和检验指标来获得对分类起较大作用的预选特征子集,然后利用IBPSO算法对基因的特征子集和支持向量机(SVM)的参数进行寻优,最后采用IBPSO算法对结肠癌检测问题进行了研究。实验结果表明,该方法可以在较少的特征基因下取得较高精度,且所选的特征基因与结肠癌密切相关,进一步验证了方法的可行性和有效性。 In order to avoid local optimal solution of Binary Particle Swarm Optimization algorithm,an Improved Binary Particle Swarm Optimization (IBPSO) algorithm was presented. In this approach, the crossover and mutational strate- gies are introduced to increase the diversity of populations and avoid the premature-convergence of particles. Vaccine ex- traction, vaccination and immune selection are used to realize the vaccine mechanism to control the population degrada- tion. In order to reduce the features of the tumor, Wilcoxon is used to remove the useless genes. IBPSO algorithm is used to optimize the subset of features and the parameters of Support Vector Machine (SVM). Finally, this method mentioned above is applied to detect the key genes of colon cancer dataset. The experimental results show that our ap- proach can get higher classification accuracy with smaller size of feature subset than that of some other approaches and the selected genes are proven m be disease-causing. The experimental results also verify the correcmess and effective- ness of our approach.
出处 《计算机科学》 CSCD 北大核心 2013年第7期239-243,共5页 Computer Science
基金 河北省自然科学基金(H2012202035) 河北省教育厅重点项目(ZH2012038) 河北省高等学校青年基金项目(SQ121006)资助
关键词 特征选择 粒子群算法优化 支持向量机 秩和检验 Feature selection, Particle swarm optimization algorithm, Support vector machine,Wilcoxon
  • 相关文献

参考文献6

二级参考文献116

共引文献72

同被引文献50

  • 1李颖新,阮晓钢.基于支持向量机的肿瘤分类特征基因选取[J].计算机研究与发展,2005,42(10):1796-1801. 被引量:51
  • 2李国正,李丹.集成学习中特征选择技术[J].上海大学学报(自然科学版),2007,13(5):598-604. 被引量:7
  • 3Schena M,Shalon D,Davis R W,et al.Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J].Science,1995,270(5235):467-470.
  • 4Ben-Dor A,Bruhn L,Friedman N,et al.Tissue classification with gene expression profiles[J].Journal of Computational Biology,2000,7(3-4):559-583.
  • 5Wu Bin,Shen Ziyin.Analysis of gene expression chip data[J].Chinese Journal of Digest,2006,14(1):68-74.
  • 6Yang Aijun,Song Xinyuan.Bayesian variable selection for disease classification using gene expression data[J].Bio-information,2010,26(2):215-222.
  • 7Inza I,Larranaga P,Blanc R,et al.Filter versus wrapper gene selection approaches in DNA microarray domains[J].Artificial Intelligence in Medicine,2004,31(2):91-103.
  • 8Baldi P,Long A D.A bayesian framework for the analysis of microarray expression data:regularized t-test and statistical inferences of gene changes[J].Bioinformatics,2001,17(16):509-519.
  • 9Furey T S,Cristianini N,Duffy N.Support vector machine classification and validation of cancer tissue samples using microarray expression data[J].Bioinformatics,2000,16(10):906-914.
  • 10Peng S H,Xu Q H,Fen G X,et al.Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines[J].FEBS Letters,2003,555(2):358-362.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部