期刊文献+

(k,l)-多样性数据发布研究 被引量:4

Achieving(k,l)-Diversity in Privacy Preserving Data Publishing
下载PDF
导出
摘要 发布未经处理的数据会导致身份泄露和敏感属性泄露,通过概化准标识符可以达到隐私保护的目的,但信息损失过大。针对该问题提出一种基于聚类的(k,l)-多样性数据发布模型并设计算法予以实现。通过使用概率联合分布度量数据对象的离散属性和连续属性相似性,提高了数据的效用。详细论述了簇的合并、调整和概化策略,结合参数k和l提出隐私保护度概念,指出了基于聚类的最优化(k,l)-多样性算法是NP-难问题,并分析了算法的复杂度。理论分析和实验结果表明,该方法可以有效减少执行时间和信息损失,提高查询精度。 In order to avoid disclosure of individual identity and sensitive attribute,reduce the information loss when da- ta release, a clustering-based algorithm to achieve(k, l)-diversity(CBAD)in data publishing was presented. The discrete attributes and continuous attributes mixed in the data set were fully taken into account while clustering. The probability distribution was used as metrics to measure similarity between the data objects. We solved the confusion of the informa- tion loss and the distance between data objects, pointed out that the clustering-based optimization(k,/)-diversity algo- rithrn is NP-hard problem, proposed the concept of privacy protection degree with parameter k and l, and analysed the complexity of the algorithm. Theoretical analysis and experimental results show that the method can effectively reduce the execution time and information loss, improve query precision.
出处 《计算机科学》 CSCD 北大核心 2013年第8期140-145,共6页 Computer Science
基金 国家自然科学基金(61073043 61170060) 安徽高等学校省级自然科学基金(KJ2011Z098)资助
关键词 隐私保护 数据发布 l-多样性 数据效用 聚类 相似性度量 Privacy preserving Data publishing l-Diversity Data utility Clustering Similarity measures
  • 相关文献

参考文献16

  • 1杨高明,杨静,张健沛.隐私保护的数据发布研究[J].计算机科学,2011,38(9):11-17. 被引量:16
  • 2Machanavajjhala A,Gehrke J, Kifer D, et al./-Diversity: Privacy beyond k-anonymity[C]//22nd International Conference on Da- ta Engineering: Institute of Electrical and Electronics Engineers Computer Society. Atlanta,G A, United states, 2006:24.
  • 3Wong R,Li J ,Fu A,et al. (a,k)-anonyrnous data publishing[J]. Journal of Intelligent In'ormation Systems, 2009,33, (2): 209- 23,.
  • 4Ninghui L, Tiancheng L, Venkatasubramanian K t-Closeness: Privacy beyond k-anonymity and l-diversity[C]//Proceedings of the 23rd International Conference on Data Engineering. Inst. of Elec. and Elec. Eng. Computer Society, Istanbul, Turkey, 2007: 106-115.
  • 5Lefevre K, Dewitt D .l, Ramakrishnan tL Incognito: Efficient full-domain k-anonymity [C] // ACM SIGMOD International Conference on Management of Data. United states. Association for Computing Machinery, Baltimore, Maryland, 2005 : 49-60.
  • 6Kabir M E, Wang H, Bertino E. Efficient systematic clustering method for k-anonymization [J]. Acta Informatica, 2011, 48, (1):51-66.
  • 7Aggarwal G,Panigrahy R, Tom, et al. Achieving anonymity via clustering [J]. ACM Trans. Algorithms, 2010,6 (3) : 1-19.
  • 8王智慧,许俭,汪卫,施伯乐.一种基于聚类的数据匿名方法[J].软件学报,2010,21(4):680-693. 被引量:49
  • 9Kenig B,Tassa T. A practical approximation algorithm for opti- mal k-anonymity[J]. Data Mining and Knowledge Discovery, 2012,25(1) : 134-168.
  • 10aNi W, Chong Z. Clustering-oriented privacy-preserving data pub-lishing[J]. Knowledge-Based Systems, 2012,35 : 264-270.

二级参考文献40

  • 1杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 2Samarati P. Protecting Respondents Identities in Microdata Release [J]. IEEE Transactions on Knowledge and Data Engineering, 2001,13(6) : 1010-1027.
  • 3Sweeney L. Achieving k-anonymity privacy protection using generalization and suppression[J]. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2002, 10 (5)1571-588.
  • 4Wang K, Fung B C M. Anonymizing sequential releases[C]// Proceedings of KDD 2006. Philadelphia, PA, USA:ACM, 2006:414-423.
  • 5Fung B C M, Wang K, Chen R, et al. Privacy-preserving data publishing:A survey of recent developments [J]. ACM Comput. Surv. ,2010,42(4) :1-53.
  • 6Nergiz M E, Clifton C, Nergiz A E. Multirelational k-anonymity [C] // Proceedings of ICDE ' 07. Istanbul, Turkey, 2007: 1417- 1421.
  • 7Machanavajihala A, Kifer D, Gehrke J, et al.l-diversity.. Privacy beyond k-anonymity[J-. ACM Transactions on Knowledge Discovery from Data, 2007,1 (1).
  • 8Wong R,Li J,Fu A,et al. (a,k)-anonymity..an enhanced k-anonyrnity model for privacy preserving data publishing [C]// Proceedings of KDD 2006. ACM, 2006:754-759.
  • 9Zhang Q, Koudas N, Srivastava D, et al. Aggregate query answering on anonymized tablesFC-ffProeeedings of ICDE'07. Istanbul, Turkey, 2007 : 116-125.
  • 10Li J, Tao Y, Xiao X. Preservation of proximity privacy in publishing numerical sensitive data [C]//Proc. ACM SIGMOD Int. Conf. Manage. Data. Vancouver, Canada: ACM, 2008 : 473-486.

共引文献62

同被引文献31

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部