期刊文献+

一种支持用户偏好的RDF模糊查询方法 被引量:3

Approach for Querying RDF with Fuzzy Conditions and User Preferences
下载PDF
导出
摘要 RDF模糊查询是实现语义Web智能检索的重要组成部分,利用Zadeh的Ⅱ型模糊集合理论、α-截集及语言变量概念,提出了支持用户偏好的RDF模糊查询方法,其扩展了SPARQL语言来实现模糊及偏好表达,构造了有序语言值子域表来实现模糊值到相应子域的映射,以确定隶属度区间。利用去模糊化规则,将扩展的查询转换为标准SPARQL,利用现有的SPARQL查询引擎实现模糊查询操作。为验证提出的方法,开发了fp-SPARQL实验系统。实验结果表明,该方法提高了RDF模糊查询效率,增强了用户对查询结果的满意度。 RDF fuzzy retrieval is an important module for realizing intelligent retrieval in Semantic Web. In this paper, Zadeh's type-II fuzzy set theory,as well as the concepts of α-cut set and linguistic variable was adopted to put forward the RDF fuzzy retrieval mechanism supporting user preference, which extends SPARQL to express fuzzy and preference conditions. Moreover,ordered sub-domain table of linguistic values was constructed to realize the projection from the fuzzy values to relayed sub-domains in the table, so as to figure out the interval of membership. On this basis, extended queries were then converted into standard SPARQL queries with a set of defuzzification rules, so as to achieve fuzzy re- trieval operations. In order to test the ideology proposed in this paper, the fp-SPARQL retrieval system was developed. According to the result of this experiment, the method improves the performance of RDF fuzzy retrieval, and corres- pondingly, users' satisfaction rate on the retrieval results is also enhanced.
出处 《计算机科学》 CSCD 北大核心 2013年第8期176-180,共5页 Computer Science
基金 国家自然科学基金项目(61073139)资助
关键词 Ⅱ型模糊集理论 语言变量 模糊查询 SPARQL fp-SPARQL Type-II fuzzy set theory Linguistic variables Fuzzy query SPARQL fp-SPARQL
  • 相关文献

参考文献10

  • 1叶育鑫,欧阳丹彤.语义Web搜索技术研究进展[J].计算机科学,2010,37(1):1-5. 被引量:20
  • 2Hogan A, Mellotte M, Powell G, et al. Towards Fuzzy Query- Relaxation for RDF [C]// 9 Extended Semantic Web Confe- rence. Berlin Heidelberg: Springer-Verlag, 2012:687-702.
  • 3Guret C,Oren E, Schlobach S, et al. An Evolutionary Perspec- tive on Approximate RDF Query Answering [J]. Scalable Un- certainty Management, 2008,5291 : 215-228.
  • 4Huang Hai, Liu Cheng-fei, Zhou Xiao-/ang. Approximating que- ry answering on RDF databases [J]. World Wide Web, 2012,15 (1) : 89-114.
  • 5Cheng Jing-wei, Ma Zong-min. f-SPARQL: A Flexible Extension of SPARQL [C]//21nt Database and Expert Systems Applica- tions. Berlin Heidelberg: Springer-Verlag, 2010 : 487-494.
  • 6Ma Zong-min, Yan Li. Generalization of strategies for fuzzy que- ry translation in classical relational databases [J]. Information Software Technology, 2607,49(2) : 172-180.
  • 7Jin Hai, Ning Xiao-min, Jia Wei-jia, et al. Combining weights with fuzziness for intelligent semantic web search [J]. Know- ledge-Based Systems, 2008,21 (2008) : 655-665.
  • 8Herrera-Viedma E. Modeling the Retrieval Process for an Infor- mation Retrieval System Using an Ordinal Fuzzy Linguistic Ap- proach [J]. Journal of The American Society For Information Science And Technology, 2001,52 (6) : 460-475.
  • 9] Chen Shyi-ming, Jong W-T. Fuzzy Query Translation for Rela- tional Database Systems [J]. IEEE Transactions on Systems, 1997,27 (4) :714-721.
  • 10Guo Yuan-bo, Pan Zheng-xiang, Heflin J. An evaluation of knowledge base systems for large owl datasets [C]//Third In- ternational Semantic Web Conference. Berlin Heidelberg: Springer-Verlag, 2004: 274-288.

二级参考文献51

  • 1车海燕,孙吉贵,荆涛,白曦.一个基于本体主题的中文知识获取方法[J].计算机科学与探索,2007,1(2):206-215. 被引量:5
  • 2Fensel D. The semantic web and its languages[J].IEEE Intelligence Systems, Nov/Dec 2000.
  • 3Berners Lee T. Semantic Web. W 3 C Recommendation[EB/OL]. http:// www. w3. org/2000/Talks/1206-xml2k-tbl/, 2000.
  • 4Berners-Lee T, Hendler J, Lassila O. ThescrnanticWeb[J]. Scientific American, May 2001.
  • 5Gruber T. A Translation Approach to Portable Ontologies[J]. Journal on Knowledge Acquisition, 1993,5(2):199-220.
  • 6Schreiber A T, et al. Ontology based photo annotation[J]. IEEE Intelligent Systems, 2001,16 : 66-74.
  • 7Lewis D D, Jones K S. Natural Language Processing for Information Retrieval[J].Communications of the ACM, 1996,39 (1) : 92-101.
  • 8Schraefel M C, Shadbolt N R, et al. CS AKTive Space: Representing Computer Science in the Semantic Web[C]//Proceedings of the 13th International World Wide Web Conference (WWW 2004). 2004:384-392.
  • 9Hyvonen E,et al. MuseumFinland-Finnish Museums on the Semantic Web[J]. Journal of Web Semantics,2005,3(2) :224-241.
  • 10Mika P. Flink:SemanticWeb Technology for the Extraction and Analysis of Social Networks[J].Journal of Web Semantics, 2005,3(2) :211-223.

共引文献19

同被引文献28

  • 1魏瑞斌.基于关键词的情报学研究主题分析[J].情报科学,2006,24(9):1400-1404. 被引量:136
  • 2王振龙.时间序列分析[M].北京;中国统计出版社,2007,43-72.
  • 3Castillo R, Rothe C, Ulf L. Rdfrnatview , indexing rdf data for sparql queries[C]I IThe 9th International Semantic Web. Berlin: Humboldt University of Berlin ,2010 :80 - 96.
  • 4Li L Q,Wang X,Meng X S,et al. ROS:run-time optimization of SPARQL queries[CJI I Web Information Systems and Mining. Taiyuan,2011 :79 -86.
  • 5Jarrar M, Dikaiakos MD. A query formulation language for the data web[J]. Knowledge and Data Engineering ,2012,24 (S) :783 -798.
  • 6ChengJ W, Ma Z M. F-SPARQL: a flexible extension of SPARQL[CJ I I Database and Expert Systems Applications (DEXA). Bilbao: University of Deusto ,2010 :487 - 494.
  • 7Porcel C G, Lopez-Herrera A, Herrera-Viedma E. A recom?mender system for research resources based on fuzzy linguistic modeling[J]. Expert Systems with Applications, 2009 , 36 : SI73 -SI83.
  • 8Herrera F, Martfnez L. A model based on linguistic 2-tuples for dealing with multi -granularity hierarchical linguistic contexts in multi-expert decision-making[J]. IEEE Transactions on Fuzzy Systems,2001 ,31 :227 -234.
  • 9Guo Y, Pan Z, HefinJ. An evaluation of knowledge base systems for large owl datasets[CJ I I The Third International Semantic Web Conference. Berlin: Springer-Verlag, 2004:274 - 288.
  • 10贾君枝,董刚.FrameNet、WordNet、VerbNet比较研究[J].情报科学,2007,25(11):1682-1686. 被引量:10

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部