期刊文献+

基于格雷对辅助的直接检测光OFDM符号定时同步新算法 被引量:1

A novel Golay-pair-aided symbol timing synchronization algorithm for direct-detection optical OFDM system
原文传递
导出
摘要 提出了在直接检测光正交频分复用(DD-O-OFDM,direct detection-optical-orthogonal frequency division multiplexing)传输系统中使用格雷对训练序列做定时同步算法。新算法利用格雷对的非周期自相关互补特性处理双滑动窗内的信号,获取信号能量;通过设计符号定时函数对信号能量进行处理,使得在获取信号能量的同时定时测量函数达到最大值,从而得到准确的符号定时点。实验统计表明,在DD-O-OFDM系统下,经200km标准单模光纤(SSMF,standard single mode fiber),以1.5Gbit/s的速率传输后,本文算法在接收端能准确地捕获定时点,获得很高的捕获率,且比其它算法有更低的时偏均值及均方误差(MSE)。当接收功率低于-36dBm时,新算法仍然能够获得最小的定时估计均值和MSE,而其它算法性能明显下降。同时,在低于-40dBm的接收功率情况下,新算法仍能准确地捕获定时点,降低了同步算法对色散的敏感度。 A novel symbol timing synchronization scheme for direct-detection optical orthogonal frequency division multiplexing (DD-O-OFDM) systems is proposed. Making use of the non-periodic auto-correla= tion complementary property of the Golay pair, the new algorithm processes the signals in the do'able sliding window to capture signal energy. It processes the signal energy by designing symbol timing func- tion so that the timing function can reach the maximum to get the correct symbolic timing point while capturing signal energy. The performance' of the new algorithm is evaluated in terms of mean and mean- square error (MSE) in one experimental system with 1.5G bit/s DD-O-OFDM signal transmission over 200 km standard single mode fiber (SSMF). The experimental results show that the new algorithm has smaller MSE than other algorithms and achieves higher timing estimation accuracy. When the received power is less than --36 dBm, the new algorithm can still obtain the smallest timing estimation mean and MSE,while the performance of other algorithms significantly decreases, so the timing precision of the new algorithm is the highest. Meanwhile,in the case of low power of -40 dBm,the new algorithm can still accurately capture the timing point, and reduce the sensitivity on dispersion of the system timing synchronization.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2013年第8期1483-1488,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(60977049) 国家高技术研究发展(863)计划(2011AA010203) 湖南省自然科学基金(12JJ3070)资助项目
关键词 直接检测(DD) 光正交频分复用(O-OFDM) 格雷对 定时同步 光纤传输 direct detection (DE)) optical orthogonal frequency division multiplexing (O-OFDM) Golay
  • 相关文献

参考文献19

  • 1Armstrong J. OFDM for optical communications[J]. J. Lightw. Technol. ,2009,27(3) : 189-204.
  • 2Schmidt B,Zan Z,Du L B,et al. 120 Gbit/s over 500 km using single-band polarization-multiplexed self-coherent optical OFDM [J]. Journal of Lightwave Technology, 2010,28(4) :328-335.
  • 3GJddings R, Hugues-Salas E, Charbonnier B, et al. Experi- mental demonstration of real-time optical OFDM transmis- sion at 11.25 Gb/s over 500 m MMFs employing directly modulated DFB lasers [J]. IEEE Photonics Technology Letters, 2011,23(1) ,51-53.
  • 4Pollet T,Van Bladel M, Moeneclaey M. Ber sensitivity of OFDM systems to carrier frequency offset and wiener phase noise[D]. IEEE Trans. Commun., 1995,43: 191- 193.
  • 5Giddings R,Tang J. Experimental demonstration and op- timisation of a synchronous clock recovery technique for real-time end-to-end optical OFDM transmission at 11.25 Gb/s over 25 km SSMF[J]. Optics Express, 2011, 19 (3) : 2831-2845.
  • 6Lee D, Cheun K. Coarse symbol synchronization algori- thms for OFDM systems in multipath channels[J]. IEEE Communication. Letters,2002,6(10) :446-448.
  • 7Schmidl T M,Oox D C. Robust frequency and timing syn- chronization for OFDM[J]. IEEE Trans. Commun., 1997, 45:1613-1621.
  • 8Ma S, Pan X, Yang G H, et al. Blind symbol synchroniza- tion based on cyclic prefix for OFDM systems[J]. IEEE Trans. Veh. Technol., 2009,58(4) : 1746-1751.
  • 9Beek J J,Sandell M. ML estimation of time and frequency offset in OFDM systems[J]. IEEE Trans. Signal Process., 1997,45(7) : 1800-1805.
  • 10Minn H, Zeng M,Bhargava V K. On timing offset estima- tion for OFDM systems[J]. IEEE Commun. Lett., 2000,4: 242-244.

二级参考文献54

  • 1江涛.新的低复杂度降低OFDM信号峰均功率比的压缩扩张技术[J].电子学报,2005,33(7):1218-1221. 被引量:8
  • 2Fan Ping-zhi and Darnell M. Sequence Design for Communications Applications[M]. New York: Wiley, 1996, Chapter 13.
  • 3Oolun M K. Electrical systems identification using Golay complementary series[J]. IEE Proceedings-Science, Measurement and Technology, 1997, 144(6): 267-272.
  • 4Davis A J and Jedwab J. Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes[J]. IEEE Transactions on Information Theory, 1999, 45(7): 2397-2417.
  • 5Ana V A, Manuel G S, and Inigo C. Improvement of wideband radio channel swept time-delay cross-correlation sounders by using Golay sequences[J]. IEEE Transactions on Vehicular Technology, 2007, 56(1): 362-368.
  • 6Groenewald J M and Maharai B T. MIMO channel synchronization using Golay complementary pairs[C]. AFRICON, Windhoek, 2007, 1-5.
  • 7Shin Q S, Kung H T, and Tarokh V. Construction of block orthogonal Golay sequences and application to channel estimation of MIMO-OFDM systems[J]. IEEE Transactions on Communications, 2008, 56(1): 27-31.
  • 8Wang H M, Gao X Q, Jiang B, You X H, and Hong W. Efficient MIMO channel estimation using complementary sequences[J]. IET Communications, 2007, 1(5): 962-969.
  • 9Li Ying and Chu Wen-bin. More Golay sequences[J]. IEEE Transactions on Information Theory, 2005, 51(3): 1141-1145.
  • 10Rathinakumar A and Chaturvedi A K. Complete mutually orthogonal Golay complementary sets from Reed-Muller codes[J]. IEEE Transactions on Information Theory, 2008, 54(3): 1339-1346.

共引文献31

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部