期刊文献+

基于大小场景整合的遥感小目标检测算法 被引量:2

Small target detection algorithm of remote sensing data based on LF-SF integration
原文传递
导出
摘要 针对目前遥感图像小目标检测算法遇到的复杂背景建模困难、先验信息严重匮乏等问题,考虑到昆虫视觉系统在图像处理方面的优势,提出基于蝇视觉系统大小场景(LF-SF)整合的信息处理模式解决遥感图像存在复杂背景的目标检测。蝇视觉的LF-SF整合机理无需考虑图像背景的复杂度以及目标先验信息,在抑制复杂背景纹理特征的同时对稀有目标特征进行增强,最后通过加权融合实现目标检测。实验结果表明,本文算法在算法设计、处理速度以及检测精度均优于现有算法。 Aiming at the present problems of small target detection algorithm for remote sensing data, such as hard to model background feature and lack of prior information seriously,considering the advantages of insect vision on image processing, this paper proposes a parallel processing model to solve the problem of targei detection of remote sensing under clutter background, which is inspired by the large field and small field (LF-SF) integration theory in fly vision system. Without background model and pri- or information, the theory of LF-SF integration can reduce the influence of background feature, enhance "the seldom target feature at the same time,and at last it uses weighted fusion to complete target detection. Experiment results show that the proposed method is better than the present algorithms in compu tation quantity,speed and accuracy of detection result.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2013年第8期1529-1536,共8页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61273170) 中央高校基本科研业务费(2011B11414) 博士学科点基金(20120094120023)资助项目
关键词 遥感图像处理 小目标检测 大小场景(LF—SF)整合 分流抑制 remote sensing data processing small target detection large field and small field (LF-SF) integration shunting inhibition
  • 相关文献

参考文献15

  • 1贸霖,潘泉,邸鞯,等.高光谱图像目标检测研究进展[J].电子学报,2006,10,(001):1-5.
  • 2宫鹏,黎夏,徐冰.高分辨率影像解译理论与应用方法中的一些研究问题[J].遥感学报,2006,10(1):1-5. 被引量:136
  • 3Nicolas Dobigeon, Jean-Yves Tourneret, Chein-I Chang. Semi-supervised linear spectral unmixing using a hierar- chical bayesian model for hyperspectral imagery[J]. IEEE Transactions on Signal Processing, 2008, 56 (7) : 2684- 2695.
  • 4赵辽英,张凯,厉小润.高光谱图像目标检测的核信号空间正交投影法[J].遥感学报,2011,15(1):13-28. 被引量:5
  • 5成宝芝,赵春晖,王玉磊.基于四阶累积量的波段子集高光谱图像异常检测[J].光电子.激光,2012,23(8):1582-1588. 被引量:7
  • 6王福友,卢志忠,袁赣南,周卫东.基于时空混沌的海杂波背景下小目标检测[J].仪器仪表学报,2009,30(6):1180-1185. 被引量:13
  • 7Chapple P B, Bertilone D C, Oaprari, R S, et al. Stochas- tic model-based processing for detection of small targets in non-Gaussian natural imagery[J]. IEEE Transactions on Image Processing, 2001,10(4) : 554-564.
  • 8Sirmacek B, Unsalan O. A probabilistic framework to de- tect buildings in aerial and satellite images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(1):211-221.
  • 9Capobianco L, Garzelli A, Camps-Vails G. Target detec- tion with semisupervised kernel orthogonal subspace pro- jection[J], IEEE Transactions on Geoscience and Remote Sensing, 2009,47(11) :3822-3833.
  • 10Camps-VaNs G,Shervashidze N, Borgwardt K M. Spatio- spectral remote sensing image classification with graph kernels[J]. IEEE Geoscience and Remote Sensing Let- ters, 2010,7(4) : 741-745.

二级参考文献61

共引文献161

同被引文献45

  • 1史泽林,王俊卿,黄莎白.模糊几何特征及其在人造目标检测中的应用[J].光电工程,2005,32(11):5-8. 被引量:5
  • 2朱兵,李金宗,陈爱军.大尺度遥感图像中港口目标快速识别[J].模式识别与人工智能,2006,19(4):552-556. 被引量:6
  • 3GAO Jian-qiang,XU Li-zhong. An efficient method to solve the classification problem for remote sensing image[J]. Int. J. Electron. Commun. (AE0), 2015,69:198-205.
  • 4GUO Wei-ya,XlA Xue-zhi,WANG Xiao-fei. A remote sen- sing ship recognition method based on dynamic probabili- ty generative model[J]. Expert Systems with Applica- tions, 2014,41 : 6446-6458.
  • 5Erus G, Lomenie N. Classification of structural cartogra- phic objects using edge-based features[A~. Proc. of the 3rd International Conference on Advances in Visual Com- puting Volume Part I. NV[C~. 2002,385-392.
  • 6Erus G, Lomenie N. How to involve structural modeling for cartographic object recognition tasks in high-resolution satellite images? [J]. Pattern Recognition Letters,2010, 31(10) :1109-1119.
  • 7WANG Ling-feng, PAN Chun-hong. Robust level set image segmentation via a local correntropy-based K-means clustering[J]. Pattern Recognition, 2014,47 : 1917-1925.
  • 8Chung Kuo-Liang, Huang Yong-Huai, Tsai S R. Orienta- tion-based discrete Hough transform for line detection with low computational complexity[J]. Mathematics and Computation, 2014,237 : 430-437.
  • 9Von Gioi R G,Jakubowicz J,Morel J M,et al. LSD: A fast line segment detector with a fatse detection contro~[J]. IEEE Transactions on Pattern Analysis Machine Intelli- gence,2010,32(4) : 722-732.
  • 10Burns J B,Hanson A R, Riseman E. M. Extracting straight lines[J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 1986,8(4) : 425-455.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部