期刊文献+

多可激性障碍下的螺旋波动力学 被引量:2

Spiral-wave dynamics in an excitable medium with many excitability obstacles
原文传递
导出
摘要 在许多实际可激系统中局部不均匀是广泛存在的,它们是螺旋波形成以及动力学行为改变的重要因素.本文研究了可激性障碍对螺旋波动力学行为的影响.研究表明,在障碍区域内可激性参数大于区域外情况下障碍会对其附近的螺旋波波头有吸引作用,多局部障碍共存时吸引行为不仅依赖障碍分布,而且依赖障碍的大小以及区域内可激性参数的具体取值.通过抑制变量小值区域的变化分析了这些行为发生的原因.在障碍区域内可激性参数小于区域外情况下障碍对其近邻的螺旋波波头有排斥作用,排斥后波头的运动依赖初始螺旋波是刚性旋转的还是漫游的.多局部障碍共存时排斥作用对螺旋波动力学行为的改变依赖障碍的分布、大小与区域内可激性参数的具体取值以及初始螺旋波的类型. Many real excitable systems can be descibed as inhomogeneous media, where the inhomogeneity is an important factor for the formation of spiral waves and the changing of their dynamics. In this paper, we investigate the effect of excitability obstacles on spiral-wave dynamics. For an excitability-reduced obstacle, the neighbor spiral tip is attracted into the obstacle. When more localized obstacles are placed, the attactive case depends on the distribution, size and excitability of the obstcales. On the basis of analyzing the small-value area of the inhibitor variable, we illustrate the mechanism of these behaviors occuring. For an excitability-enhanced obstacle, the nearby spiral tip is repelled. The tip motion after the repelsive effect depends on the type of the initial spiral wave, i.e. rigidily rotating spiral wave or meandering spiral wave. In the present of more localized obstacles, there exist different behaviors for different distributions, sizes and exeitabilities of the obsteales, and different types of initial waves.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第16期45-54,共10页 Acta Physica Sinica
基金 国家自然科学基金青年科学基金(批准号:11005030) 河北省自然科学基金(批准号:A2013205147) 河北省教育厅科研基金(批准号:2009135)资助的课题~~
关键词 螺旋波 时空混沌 可激性障碍 spiral wave, spatiotemporal chaos, excitability obstacle
  • 相关文献

参考文献41

  • 1Cross M C,Hohenberg P C.1993.Rev.Mod.Phys.65 851.
  • 2Mikhailov A S,Showalter K.2006.Phys.Report 425 79.
  • 3Frisch T,Rica S,Coullet P,Gilli J M 1994 Phys.Rev.Lett.72 1471.
  • 4Arecchi F T,Boccaletti S,Ramazza P 1999 Phys.Report 318 1.
  • 5Van Oss C,Panfilov A V,Hogeweg P,Siegert F,Weijer C J.1996.J.Theor.Biol.181 203.
  • 6Lechleiter J,Girard S,Peralta E,Clapham D.1991.Science 252 123.
  • 7Huang X Y,Xu W F,Liang J M,Takagaki K,Gao X,Wu J Y.2010.Neuron 68 978.
  • 8Nettesheim S,Oertzen A V,Rotermund H H,Ertl G.1993.J.Chem.Phys.98 9977.
  • 9Dong L F,Wang H F,Liu F C,He Y F.2007.New.J.Phys.9 330.
  • 10Panfilov A V,Keener J P.1993.J.Theor.Biol.163 439.

二级参考文献21

  • 1Zheng Z G 2001 Chin. Phys. 10 703
  • 2Boccaletti S, Kurths J, Osipov G et al 2002 Physics Report (366) 1
  • 3Boccaletti S, Grebogi C, Lai Y C et al 2000 Physics Report (329) 103
  • 4Chudin E, Garfinkel A, Weiss J et al 1998 Progress in Biology & Molecular Biology 69 225
  • 5Sankararaman S, Menon G I and Sunil Kumar P B 2004 Phys. Rev.E 70 031905
  • 6Zhang P, Liao X and Zhang K 2002 Phys. Rev. E 66 055203
  • 7Meron E and Pelcé P 1988 Phys. Rev. Lett. 60 1880
  • 8Otani N F 2000 J.Comput. Phys. 161 21
  • 9Samie F H and Jalife J 2001 Cardiovascular Research 50 242
  • 10Biktashev V N, Holden A V and Mironov S F 2002 Chaos, Soliton and Fractals 13 1713

共引文献17

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部