期刊文献+

高气压直流辉光CH_4/H_2等离子体的气相过程诊断 被引量:1

A diagnosis of gas-phase processes in a high pressure DC CH_4 /H_2 plasma
原文传递
导出
摘要 对高气压(约100Torr)直流辉光碳氢等离子体的气相过程进行了光谱和质谱原位诊断.在高气压下,等离子体不同区域光发射特性存在明显差异.正柱区存在着以C2和CH为主的多个带状谱和分立谱线,阳极区粒子发射谱线明显减少,而在阴极区则出现大量复杂的光谱成分,表明高气压情形下等离子体与阴极间强烈的相互作用将导致复杂的原子分子过程.从低气压到高气压演变过程中,电子激发温度降低而气体分子转动温度升高.在高气压下,高甲烷浓度导致C2,C2H2及C2H4增多而C2H6减少.表明在高气压条件下,气体温度对气相过程的影响作用显著增强. In this work, gas phase processes in a high pressure (-100 Torr) DC hydrocarbon plasma are investigated in situ by optical emission spectroscopy and mass spectroscopy. In the high pressure plasma, optical emission characteristics of glow layers are obviously different. C2, CH dominated band spectra and discrete spectra are distinctively observed in the positive column, whereas the emission intensity is found to decrease in the anode region. In the cathode region, a large number of complicated spectra are detected, which indicates the intensive interaction between the cathode and plasma under high pressure induces complicated atomic and molecular processes. With the the increase of pressure, electron excitation temperature decreases while gas rotational temperature goes up. High methane concentration causes increases in C2, C2H2 and C2H4 but a reduction in C2H6. Those suggest that the effect of gas temperature. on gas phase process is significantly enhanced under high pressure.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第16期279-283,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11075158) 国家自然科学基金国家基础科学人才培养基金(批准号:J1103207)资助的课题~~
关键词 高气压直流等离子体 光发射谱 质谱 high pressure DC plasma, optical emission spectroscopy, mass spectroscopy
  • 相关文献

参考文献12

  • 1Ding F,Zhu X D,Zhan R J,Ni T L,Ke B,Zhou H Y,Chen M D,Wen X H.2009.Appl.Phys.Lett.95 121501.
  • 2Sciortino S,Lagomarsino S,Pieralli F,Borchi E,Galvanetto E.2002.Diamond Relat.Mater.11 573.
  • 3Lee W S,Baik Y J,Chae K W.2003.Thin Solid Films 435 89.
  • 4Vladimirov S V,Ostrikov K.2004.Phys.Rep.393 175.
  • 5Suzuki K, Sawabe A, Inuzuka T 1990 Jpn. J. Appl. Phys. 129 153.
  • 6Baik Y J,Lee J K,Lee W S,Eun K Y 1999 Thin Solid Films 341 202.
  • 7Lee J K,Eun K Y,Baik Y J,Cheon H J,Rhyu J W,Shin T J,Park J W.2002.Diamond Relat.Mater.11 463.
  • 8陈俊英,董丽芳,李媛媛,宋倩,嵇亚飞.大气压介质阻挡放电超四边形斑图的等离子体参量[J].物理学报,2012,61(7):338-344. 被引量:11
  • 9Laux C O,Spence T G,Kruger C H.2003.Plasma Sources Sci.Technol.12 125.
  • 10Staack D,Farouk B,Gutsol A F,Fridman A A.2006.Plasma Sources Sci.Technol.15 818.

二级参考文献2

共引文献10

同被引文献30

  • 1Wang L, Qian Z, Huang X, et al. Three-dimensional time-dependent model and simulation of high-current vacuum arc in commercial axial magnetic fields vacuum interrupters[J]. IEEE Transactions on Plasma Science, 2013, 41(8): 2015-2021.
  • 2Mackow A, Kizilcay M. Simulation of secondary arc on 400 k~ transmission system consisting of overhead line section and power cable section[ R]. Wroclaw: Poland. Proceedings of the 12th International Conference on Environment and Electrical Engineering, 2013.
  • 3Boxman R L. Early history of vacuum arc deposition [J]. IEEE Transactions on Plasma Science, 2001, 29 (5) : 759-761.
  • 4Stcffens H D, Babiak Z, Wewel M. Recent developments in arc spraying[J]. 1EEE Transactions on Plasma Science, 1990, 18(6): 974-979.
  • 5Giuliani L, Xaubet M, Grondona D, et al. Electrical studies and plasma characterization of an atmospheric pressure plasma jet operated at low frequency[J]. Physics of Plasmas, 2013, 20(6): 063505.
  • 6Huang R, Fukanuma H, Uesugi Y, et al. Comparisons of two models for the simulation of a DC arc plasma torch [J]. Journal of Thermal Spray Technology, 2013, 22 (2-3) : 183-191.
  • 7Van Lanen E P A, Smeets R P P, Popov M, et al. Current-zero characteristics of a vacuum circuit breaker at short-circuit current interruption[ C ]. Discharges and Electrical Insulation in Vacuum, Matsue, Japan, 2006.
  • 8Wu Y, Rong M, Sun Z, et al. Numerical analysis of are plasma behaviour during contact opening process in low-voltage switching device [ J ]. Journal of Physics D: Applied Physics, 2007, 40(3): 795-802.
  • 9Takahashi S, Arail K, Morimiya O, et al. A PIC-MCC simulation of the high-votage interruption ability of a vacuum interrupter[ J] . IEEE Transactions on Plasma Science, 2007, 35(4): 912-919.
  • 10Shmelev D L, Barengolts S A. Kinetic modeling of initiation of explosion center on cathode under dense plasma[J]. IEEE Transactions on Plasma Science, 2013, 41(8) : 1959-1963.

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部