期刊文献+

螺旋型抗菌肽的疏水性对抗细菌与抗真菌活性的影响比较 被引量:6

Comparison on effect of hydrophobicity on the antibacterial and antifungal activities of α-helical antimicrobial peptides
原文传递
导出
摘要 α-螺旋型多肽HPRP-A1由15个氨基酸残基组成,来源于幽门螺杆菌核糖体蛋白L1的N端.本研究以HPRP-A1为模板,在其非极性面中心通过单个氨基酸定点取代的方法,形成一系列疏水性不同的多肽类似物,系统地研究疏水性对α-螺旋型多肽生物活性的影响.结果显示,多肽疏水性及所带净电荷对多肽生物活性起着重要的作用;HPRP-A1及疏水性相对较高的多肽类似物具有较好的广谱抗菌活性(包括革兰氏阳性菌、革兰氏阴性菌及真菌),但也有相对较高的溶血活性;多肽的疏水性与所带净电荷的变化对多肽抗细菌活性与抗真菌活性所产生的影响有着相似的变化趋势和程度.这意味着多肽与细菌的作用机制和多肽与真菌的作用机制存在一定的相关性.多肽对细菌和真菌的抗菌活性存在特异性,为设计出具有临床应用前景的抗菌肽药物奠定了基础. HPRP-A1, a 15-mer α-helical cationic peptide, was derived from N-terminus of ribosomal protein L1 (RpL1) of Helicobacter pylori. In this study, HPRP-A1 was used as a framework to obtain a series of peptide analogs with different hydrophobicity by single amino acid substitutions in the center of nonpolar face of the amphipathic helix in order to systematically study the effect of hydrophobicity on biological activities of α-helical antimicrobial peptides. Hydrophobicity and net charge of peptides played key roles in the biological activities of these peptide analogs; HPRP-A1 and peptide analogs with relative higher hydrophobicity exerted broad spectrum antimicrobial activity against Gram-negative bacteria, Gram-positive bacteria and pathogenic fungi, but also showed stronger hemolytic activity; the change of hydrophobicity and net charge of peptides had similar effects with close trend and extent on antibacterial activities and antifungal activities. This indicated that there were certain correlations between the antibacterial mode of action and the antifungal mode of action of these peptides in this study. The peptides exhibited antimicrobial specificity for bacteria and fungi, which provided potentials to develop new antimicrobial drugs for clinical practices.
出处 《中国科学:化学》 CAS CSCD 北大核心 2013年第8期1041-1050,共10页 SCIENTIA SINICA Chimica
基金 吉林省自然科学基金(201015103) 吉林省青年基金(20100126)资助
关键词 抗菌肽 疏水性 净电荷 特异性 作用机制 antimicrobial peptide hydrophobicity net charge specificity mode of action
  • 相关文献

参考文献23

  • 1Li Y, Qi X, Zhang QH, Huang YD, Su ZJ. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides, 2012, 37: 207-215.
  • 2Hancock REW, Rozek A. Role of membranes in the activities of antimicrobial cationic peptides. Fems Microbiol Lett, 2002, 206: 143-149.
  • 3Sitaram N, Nagaraj R. Interaction of antimicrobial peptides with biological and model membranes: Structural and charge requirements for activity. Biochim Biophys Acta, 1999, 1462: 29-54.
  • 4Jung HJ, Park Y, Sung WS, Suh BK, Lee J, Hahm KS, Lee DG. Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim Biophys Acta, 2007, 1768: 1400-1405.
  • 5Chen Y, Guarnieri MT,Vasil AI,Vasil ML, Mant CT, Hodges RS. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Ch, 2007, 51: 1398-406.
  • 6Tsai CW, Ruaan RC, Liu CI. Adsorption of antimicrobial indolicidin-derived peptides on hydrophobic surfaces. Langmuir, 2012, 28: 10446-52.
  • 7Mookherjee N, Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K, Roche FM, Mu R, Doho GH, Pistolic J, Powers JP, Bryan J, Brinkman FS, Hancock RE. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol, 2006, 176: 2455-64.
  • 8Lee DG, Kim HN, Park Y, Kim HK, Choi BH, Choi CH, Hahm KS. Design of novel analogue peptides with potent antibiotic activity based on the antimicrobial peptide, HP (2-20), derived from N-terminus of Helicobacter pylori ribosomal protein L1. Biochim Biophys Acta, 2002, 1598: 185-94.
  • 9Huang YB, Wang XF, Wang HY, Liu Y, Chen Y. Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol Cancer Ther, 2011, 10: 416-26.
  • 10Bylund J, Christophe T, Boulay F, Nystrom T, Karlsson A, Dahlgren C. Proinflammatory activity of a cecropin-like antibacterial peptide from Helicobacter pylori. Antimicrob Agents Ch, 2001, 45: 1700-1704.

同被引文献52

  • 1杜淑环,刘秀明,万秋,杨晶,王艳芳,李海燕,李校堃.天蚕素抗菌肽的研究进展[J].动物营养学报,2012,24(1):41-47. 被引量:35
  • 2谢智,黄颖桢,张洋,倪莉.沼水蛙皮肤中抗菌肽的分离纯化与活性测定[J].福州大学学报(自然科学版),2004,32(6):759-762. 被引量:1
  • 3Li J, Xu X, Xu C, et al. Anti-infection peptidomics of amphibian skin[ J]. Mol Cell Proteomics, 2007, 6(5) : 882-894.
  • 4Yang X, Lee W H, Zhang Y. Extremely abundant antimicrobial peptides existed in the skins of nine kinds of Chinese odorous frogs[J~. JProteomeRes, 2012, 11(1): 306-319.
  • 5Zhou J, McClean S, Thompson A, et al. Purification and characterization of novel antimicrobial peptides from the skin secretion of Hylarana guentheri [ J]. Peptldes, 2006, 27( 12): 3077 -3084.
  • 6Tyler M J, Stone D J, Bowie J H. A novel method for the release and collection of dermal, glandular secretions from the skin of frogs [ J ]. J Phann Toxicol Methods, 1992, 28 (4) : 199-200.
  • 7Conlon J M, Kolodziejek J, Nowotny N. Antlmicrobial peptldes from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents[ J]. Biochina Biophys Acta, 2004, 1696(1) : 1-14.
  • 8Barchiesi F, Colombo A L, McGough D A, et al. Comparative study of broth macrodilution and mierodilution techniques for in vitro antifungal susceptibility testing of yeasts by using the National Committee for Clinical Laboratory Standards" proposed standard[ J]. J Clin Mierobiol, 1994, 32(10) : 2494-2500.
  • 9King R D, Sternberg M J. Identification and application of the concepts important for accurate and reliable protein secondary structure prediction [ J ]. Protein Sci, 1996, 5( 11 ) : 2298-2310.
  • 10Schiffer M, Edmundson A B. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential[J]. Biophys J, 1967, 7(2): 121-135.

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部