摘要
Co-assembly of ABC linear triblock copolymer/nanoparticle into bump-surface multicompartment hybrids in selective solvent was studied through self-consistent field theory (SCFT) simulation. Results from three-dimensional SCFT simulation showed that the hybrid morphology depended on the length and number of grafted chains, whereas the number and shape of bumps relied on nanoparticle size. Moreover, the simulation results showed that the length and number of grafted chains had equivalent effect on hybrid morphology. Calculated results indicated that entropy was a more important factor than enthalpy in the co-assembly.
Co-assembly of ABC linear triblock copolymer/nanoparticle into bump-surface multicompartment hybrids in selective solvent was studied through self-consistent field theory (SCFT) simulation. Results from three-dimensional SCFT simulation showed that the hybrid morphology depended on the length and number of grafted chains, whereas the number and shape of bumps relied on nanoparticle size. Moreover, the simulation results showed that the length and number of grafted chains had equivalent effect on hybrid morphology. Calculated results indicated that entropy was a more important factor than enthalpy in the co-assembly.
基金
supported by the National Natural Science Foundation of China for General Program(No. 21274145)