期刊文献+

伊马替尼治疗慢性粒细胞白血病的耐药机制与对策 被引量:4

Mechanism and strategy against Imatinib-resistant chronic myeloid leukemia
原文传递
导出
摘要 95%的慢性粒细胞白血病(chronic myeloid leukemia,CML)患者存在t(9;22)(q32;q21)易位即Ph'染色体,从而形成Bcr-Abl融合基因并编码具有高酪氨酸激酶活性的BCR-ABL融合蛋白,在慢性粒细胞白血病的发病中起着重要作用。甲磺酸伊马替尼(Imatinib mesylate,IM,格列卫)是针对酪氨酸激酶的靶向抑制剂,它通过与ATP竞争结合位点使底物不能磷酸化,从而阻断下游异常的细胞信号转导通路,达到抑制肿瘤细胞增殖并诱导细胞凋亡的目的,对慢性粒细胞白血病患者有很好的治愈率。但随着药物的推广,临床上部分病人出现了对伊马替尼的耐药。本文就伊马替尼耐药机制以及耐药患者的解决方案综述如下。 Philadelphia chromsome is found in 95% of chronic myeloid leukemia (CML) patients, which results from the reciprocal translocation of chromosome 9 and chromosome 22 and leads to the Bcr-Abl fusion gene. The BCR-ABL fusion product induces constitutively active cytoplasmic tyrosine kinase and plays a central role in the pathogenesis of the CML. A targeted tyrosine kinase inhibitor Imatinib mesylate(IM), can inhibit tumor cell proliferation and induce its apoptosis by competing binding sites with ATP, blocking substrate phosphorylation, interrupting the abnormal cell signal transduction pathways. And IM shows a very good cure rate in CML patients. However, with the widely use of IM, some patients have appeared resistance. Here, we summarize the mechanisms of IM resistance and the corresponding solutions.
作者 王彦 冯文莉
出处 《生命的化学》 CAS CSCD 2013年第4期407-412,共6页 Chemistry of Life
基金 国家自然科学基金项目(30871102 81070421)
关键词 慢性粒细胞白血病 伊马替尼 耐药机制 chronic myeloid leukemia imatinib resistance mechanism
  • 相关文献

参考文献35

二级参考文献107

  • 1李萍,张代民,王化芬,崔庆.急性白血病化疗前后检测血清α_1-AG的意义[J].临床军医杂志,2006,34(6):679-681. 被引量:2
  • 2Thomas J, Wang LH, Richard E, et al. Active transport of imatinib into and out of cells : implications for drug resistance. Blood, 2004,104:3739-3745.
  • 3Baccarani M, Saglio G, Goldman J, et al. Evolving concepts in the management of chronic myeloid leukemia:recommendations from an expert panel on behalf of the European Leukemia Net. Blood, 2006,108 : 1809-1820.
  • 4White DL, Saunders VA, Dang P, et al. Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood, 2007, 110:4064-4072.
  • 5Burckhardt G, Wolff NA. Structure of renal organic anion and cation transporters. Am J Physiol Renal Physiol, 2000, 278:853- 866.
  • 6Takeuchi A, Motohashi H, Okuda M, et al. Decreased function of genetic variants, Pro283Leu and Arg287Gly, in human organic cation transporter hOCT1. Drug Metab Pharmacokinet, 2003,18 : 409-412.
  • 7Sakata T, Anzai N, Shin H J, et al. Novel single nucleotide polymorphisms of organic cation transporter 1 ( SLC22A1 ) affecting transport functions. Biochem Biophys Res Commun, 2004, 16: 789-793.
  • 8Kang H J, Song IS, Shin HJ, et al. identification and functional characterization of genetic variants of human organic cation transporters in a Korean population. Drug Metab Dispos, 2007, 35: 667 -675.
  • 9Shu Y, Leabman NK, Feng B, et al. Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. Proc Natl Acad Sci U S A, 2003,100:5902-5907.
  • 10Shu Y, Sheardown SA, Brown C, et al. Effect of genetic variation in the organic cation transporter 1 ( OCT1 ) on metformin action. J Clin Invest, 2007,117 : 1422-1431.

共引文献17

同被引文献46

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部