摘要
基于分解-协调的系统理论,采用软计算方法测算广州市及各区域科技进步对经济增长的贡献份额。对目标系统(广州市"十区两市")按照科技进步水平采用遗传-自组织迭代技术进行软分类;通过模糊神经网络构建从物质资本、劳动力、人力资本及研究与开发到经济产出之间模糊映射关系,得到不同科技水平的子系统中科技进步对经济增长的贡献率,进而计算广州市及各区域科技进步对经济增长的贡献份额。
Soft computing is applied to estimate the contribution share of S&T progress on economic growth of Guangzhou city based on the theory of system decomposition - coordination. Target system is softly categorized by GA - ISODATA algo- rithm according to S&T lever. Then fuzzy artificial neural network (FANN) is used to set up the I/O model, with the fixed asset, labor force, human capital and R&D as input variables, and the corresponding GDP as the output, to calculate the economic contribution share of S&T in each subsystem that has similar S&T lever. Finally economic contribution share of S&T progress of Guangzhou city with each districts is calculated.
出处
《科技管理研究》
CSSCI
北大核心
2013年第16期44-47,共4页
Science and Technology Management Research
基金
广东省高校人文社科一般项目"地区人才资源对经济增长的贡献率计算及动态预测"(12ZS0080)
广州市社科"十二五"规划"广州市科技进步水平的测度及对经济增长贡献份额研究"(11Q25)
广东省大学生创新训练项目"我国经济增长中人才贡献率的测算"(1184512130)
关键词
科技进步
贡献份额
经济增长
软计算
S&T progress
contribution share
economic growth
soft computing